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The formalism of polar coupling constants, as applied to the neutral current inter-
actions, indicates that the partial true unification of interactions associated with
the gauge group SU(3)c×SU(2)L×G, where G is the generalization of U(1)Y , can go
via two independent branches; these branches we call the Glashow and Weinberg-
Salam branches. The uniqueness of the photon, vector bosons and neutral current
interactions, in general, are guaranteed with respect to these two branches only
if G = U(1)2 × · · ·×U(1)n, where the indices are associated with gauge coupling
constants g2, ..., gn (g1 is associated with SU(2)L); this follows from the fact that
only for this G exists a transformation connecting coupling constants and group
generators between the two branches. This fact severely limits the possibilities of
unification at higher energy scales. At the energy scale just beyond the Standard
Model, G = U(1)2×U(1)3; the effects of this G on some leptonic processes are
briefly discussed.

1. Introduction

Here we carry out the polar coupling constants formulation of the partial true
unification of interactions involving the gauge group SU(3)c×SU(2)L×G, where G,
as yet unknown, is the generalization of Abelian U(1)Y . The polar coupling con-
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šoln: restrictions on the unification gauge groups . . .

stants provide an approach to unification of interactions in which the gauge group
is not specified beforehand but, rather, its form is determined from the consistency
conditions within the approach itself. In this formalism, the coupling angles that
come from the SU(2)L×G gauge coupling constants, cease being coupling param-
eters when they are identified as mixing angles, and the spherical neutral vector
bosons are identified as physical particles. This, in fact, is a partial true unification
of gauge interactions since, in addition to the SU(3)c coupling constant, only the
“radial” coupling constant is a bona fide coupling parameter. Only two spherical
vector bosons can play the role of the photon. The one case (the Glashow branch)
allows partial true unification of many gauge models. The other case (Weinberg-
Salam branch) is very restrictive with G allowed to be U(1)2 × · · ·×U(1)n, where
indices are associated with gauge coupling constants g2, ..., gn (g1 is associated with
SU(2)L). Now the form for G is determined by simply requiring that the physics be
the same regardless of the branch. On the formal level, this means that the photon,
vector bosons and neutral current interactions, in general, do not change as one
transitions from one branch to the other. Clearly, then G = U(1)2×···×U(1)n, since
only for this G exists a transformation connecting coupling constants and group
generators when going from the Glashow to the Weinberg–Salam branch, and vice–
versa. If, as it is customary, one assumes that under G = U(1)2×···×U(1)n fermions
are defined to behave in the same way as in the Standard Model, then the only
additional fermion interaction is given in terms of the weak fermion hypercharge,
providing that there exists a U(1)3 non–elementary fermion particle. Effectively, as
far as fermion interactions are concerned, the gauge group is now G = U(1)2×U(1)3
which represents unification at the energy scale that is just beyond the Standard
Model.

The new fermion hypercharge neutral current interaction is mediated by new
neutral vector boson Z’. The coupling constant of this new neutral current inter-
action is allowed to be even smaller than the electromagnetic coupling constant.
Also, from mass relations, Mz′ , the mass of Z’–boson, need not be very large. As a
consequence, the effects of this neutral current interaction on the phenomenologi-
cal level (with amplitudes evaluated in the Born approximation) on, say, leptonic
processes, is essentially of the same order of magnitude as the effect of the usual
electroweak radiative corrections.

Here, the effects of this new hypercharge fermion neutral current interaction are
analysed on just few leptonic processes. One concludes that this interaction would
alter angular and energy distributions and total cross–sections of (ν)

ee →( ν)

ee and
e+e− → νν′s reactions. From the phenomenological analysis of (ν)

ee →( ν)

ee Born
approximation cross–sections, we conclude that the mass of the Z’ neutral vector
boson should be in the range MZ < MZ′ < 7MZ , where MZ is the Standard Model
neutral vector boson mass.

In Section 2 the partial true unification of interactions is discussed as occurring
simultaneously in the two branches of the coupling constant space, the Glashow
and Weinberg–Salam branches. Here it is shown that these two branches are the
consequence of the fact that the photon can be described by two independent neu-
tral vector boson (coupling constant) polar components. Higher energy scale partial
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true unification is discussed in Section 3, where the uniqueness of the interactions
demands G = U(1)2×···×U(1)n. Section 4 is devoted to deriving the mass relations
among vector bosons. Just beyond the Standard Model, a new fermion hypercharge
neutral current interaction is derived in Section 5, where it is assumed that fermion
quantum numbers are the same as in the Standard Model. Here also the effects of
this fermion hypercharge interaction is evaluated for (ν)

ee →( ν)

ee and e+e− → νν′s
reactions. In Section 6 the discussion and conclusion are given.

2. Partial true unification with two independent branches

Following Georgi and Weinberg [1], we start the discussion of the partial true
unification of the gauge group SU(3)c×SU(2)L×G by writing the expression for the
charge operator (defined in terms of generators of the gauge group SU(2)L×G) and
the neutral part of gauge interaction Lagrangian involving fermions:

Q = T3L +
Y

2
,

Y

2
=

n
∑

i=2

KiTi, L(neutral) =
n
∑

i=1

giA
µ
i ΨγµtiΨ, (2.1, 2.2)

where Y is the weak hypercharge operator. SU(2)L×G involves n gauge coupling
constants: g1 ≡ g from the SU(2)L and g2, ..., gn from G. Here Aµ

i , i = 1, ..., n
are neutral gauge fields, ti are matrices (which may depend on γ5) that represent

T f
i , the fermion part of Ti; Ti are Hermitean electrically neutral generators of

SU(2)L and G. Aµ
1 is the third component of the SU(2)L vector boson triplet: Wµ

i ;
i = 1, 2, 3; Aµ

1 = Wµ
3 , T1 = T3L with TiL, i = 1, 2, 3, being the generators of SU(2)L.

If G contains Abelian subgroup U(1)l (where subscript l is associated with gauge
coupling constant gl) with generator Tl ≡ Yl, then, because the structure constants

are absent, one may, consistent with expression (2.1) for Q, define a new Ỹl, and
g̃l, as

glYl = g̃lỸl; g̃l =
gl
Kl

, Ỹl = KlYl. (2.3)

Relations (2.3) reflect the “invariance” of the U(1)l gauge coupling.

The Cartesian, g1, ..gn, and polar, θ0 ≡ r, θ1, ..., θn−1, components of coupling
constant vector ~g are related as

gi = θ0Ciθ0 , i = 1, ..., n; θ20 ≡ r =
n
∑

i=1

g2i ,

C1θ0 = cos θ1, Ciθ0 = sin θ1 · · · sin θi−1 cos θi, i = 2, ..., n− 1,

Cnθ0 = sin θ1 · · · sin θn−1. (2.4a)
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The non–zero (diagonal) components of the metric tensor in the (orthogonal) polar
coupling constant space are

α = 0 : ηθ0θ0 = 1;α = 1 : ηθ1θ1 = θ20,

α = 2, ..., n− 1 : ηθαθα =

n
∑

i=1

(

∂gi
∂θα

)2

= θ20

α
∏

β=2

sin2 θβ−1. (2.4b)

Since Ciθ0 = ∂gi/∂θ0, one introduces Ciθα as the transformation coefficients that

relate the Cartesian and polar unit vectors, ĝ · θ̂α = Ciθα :

Ciθα =
1

√
ηθαθα

∂gi
∂θα

=
√
ηθαθα

∂θα
∂gi

, (2.4c, d)

where the second equality is due to the invariance of the line element. Explicitly,

Ciθα =
1

√
ηθαθα

(

δ0αCiθ0 + θ0
∂Ciθ0

∂θα

)

=
1

√
ηθαθα

Ciθ0 ·

·
{

δ0α + θ0(1− δ0α)
[

(δα(i−1) + δα(i−2) + ...) cot θα − (1− δin)δiα tan θα
]}

,

α = 0, ..., n− 1, i = 1, ..., n, Ciθα = 0, α > i /=n; Cnθα = 0, α ≥ n. (2.4e)

From relations (2.4c,d), one deduces straightforwardly the orthonormal relations:

n
∑

i=1

CiθαCiθβ = δαβ ,
n−1
∑

i=1

CiθαCjθα = δij . (2.4f)

Next, Cartesian, Aµ
i , and polar, Zµ

θα
, components of the (free) neutral vector

boson–vector in the n–dimensional coupling constant space are related as (ξ2i = 1)

Zµ
θα

=

n
∑

i=1

CiθαξiA
µ
i , Aµ

i = ξi

n−1
∑

α=0

CiθαZ
µ
θα
. (2.5a, b)

Assigning Zµ
θα

as the physical neutral vector boson fields, one has for L(neutral)

L(neutral) =
n−1
∑

α=0

L(NC; θα), L(NC; θα) = Ψγµ(NC)αΨZµ
θα
, (2.6a, b)

where (NC)α is the generic fermion neutral current projection operator:

(NC)α = θ0

n
∑

i=1

ξiT
f
i Ciθ0Ciθα (2.7a)
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= θ0
1

√
ηθαθα

n
∑

i=1

ξiT
f
i (Ciθ0)

2·

·
{

δ0α + θ0(1− δ0α)
[

(δα(i−1) + δα(i−2) + ...) cot θα − δαi tan θα
]}

, (2.7b)

where Ciθα was used in the form (2.4e).

At this point one chooses the photon field to be, say, Zµ
θβ
. One must have that

(NC)β = ξeeQf , e > 0; L(em) = L(NC; θβ) = ξeeΨγµQfΨAµ, Aµ ≡ Zµ
θβ
,

(2.8a, b)
where Qf is the fermionic part of Q and ξ2e = 1. Relation (2.7a) for α = β yields
the condition

θ0(β)ξi(β)Ciθ0(β)Ciθβ (β) = eξe(β)Ki(β), (2.9a)

which insures that (K1(β) ≡ 1),

n
∑

i=1

Ki(β)T
f
i = Qf . (2.9b)

However, since C1θβ = 0, β > 1 and C1θβ /=0, β = 0, 1, one can only have that,

Zµ
θβ

= Aµ, for β = 0, 1 only. (2.9c)

This defines two branches of partial true unification: Zµ
θ0

= Aµ and Zµ
θ1

= Aµ, which

we call the Glashow (β = 0) and Weinberg–Salam (β = 1) branches, respectively.
As a consequence, the quantities will be different for β = 0 and β = 1 and, as such,
formally dependent on β; θα(β), Ki(β), etc., which was already started in relation
(2.9a). However, regardless of the branch, consistent with relations (2.1) and (2.2),
the Weinberg angle is defined as

sW =
e

g1(β)
→ e = θ0(β)c1(β)sW , β = 0, 1; g1(0) = g1(1) ≡ g, (2.9d)

where in general sα(β) = sin θα(β), etc., with β = 0, 1.

Relations (2.4) and (2.9) determine coefficients K for the branches. Taking that
ξi(0) = ξe(0), from (2.9a), one obtains for the Glashow branch:

Ki(0) =
(Ciθ0)

2

c1(0)sW
, K1(0) = 1 → c1(0) = sW . (2.10a, b)

This, with the help of relation (2.4a), specify Ki(0) as:

Kα(0) = (cot θW s2(0)s3(0) · · · sα−1(0)cα(0))
2, α = 2, ..., n− 1,
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Kn(0) = (cot θW s2(0)s3(0) · · · sn−1(0))
2, (2.10c, d)

cot2 θW ≥ Ki(0) ≥ 0, i = 2, ..., n. (2.10e)

Similarly, from relations (2.4a) and (2.9a) for the Weinberg–Salam branch one
deduces:

Ki(1) =
ξi(1)ξe(1)Ciθ0(1)Ciθ1(1)

c1(1)s1(1)

=
ξi(1)ξe(1)(Ciθ0(1))

2

c1(1)s1(1)

{[

δ1(i−1) + δ1(i−2) + ...
]

cot θ1(1)− (1− δin)δi1 tan θ1(1)
}

.

(2.11a)
From this equation

K1(1) = 1 → −ξ1(1) = ξe(1). (2.11b)

Next, with C1θ0(1) = −s1(1), combining relations (2.9e) and (2.11b) with (2.9a),
one obtains

−ξ1(1)θ0(1)c1(1)s1(1) = ξe(1)θ0(1)c1(1)sW → s1(1) = sW . (2.11c)

This now allows writing down detailed expressions for Ki(1):

Kα(1) = [s2(1)s3(1) · · · cα(1)]2, α = 2, ..., n− 1, (2.11d)

Kn(1) = [s2(1)s3(1) · · · sn−1(1)]
2, 1 ≥ Ki(1) ≥ 0, i = 2, ..., n. (2.11e, f)

Here, we generalized −ξ1(1) = ξe(1) into −ξ1(1) = ξ2(1) = ... = ξn(1) = ξe(1) and
one should notice that the K(1)’s do not depend on s1(1) = sW . The relation with
theory of Glashow, Weinberg, and Salam is, of course, only through the first angle:
c1(0) = s1(1) = sW [2].

Using relations (2.7) one writes down the generic fermion neutral current pro-
jection operators for the Glashow branch as:

(NC(0))0 = θ0(0)ξe(0)

2
∑

i=1

(Ciθ0(0))
2T f

i (0) = eξe(0)

n
∑

i=1

Ki(0)T
f
i (0) = eξe(0)Qf ,

(2.12a)

α ≥ 1 : (NC(0))α = (ηθαθα(0))
−1/2ξe(0)eθ0(0)·

·
{[

Kα+1(0)T
f
α+1(0) +Kα+2(0)T

f
α+2(0) + · · ·

]

cot θα(0)−Kα(0)T
f
α (0) tan θα(0)

}

=
(ηθαθα(0))

−1/2ξe(0)eθ0(0)

cα(0)sα(0)
·
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·{[Qf −
(

T f
3L +K2(0)T

f
2 (0) + · · ·+Kα−1(0)T

f
α−1(0)

)]

c2α(0)−Kα(0)T
f
α (0)

}

,

(2.12b)
where Qf denotes the fermion charge operator regardless of the branch. Specifically,
for α = 1 one obtains,

(NC(0)1 ≡ (NC(0))NC = − ξe(0)e

sW cW
[T f

3L − s2WQf ], Zµ
θ1

≡ Zµ. (2.12c)

Similarly, by taking into account relation (2.11a), one obtains the fermion neutral
current projection operators for the Weinberg–Salam branch:

α = 0 : (NC(1))0 = θ0(1)ξe(1)

{

−T3L(C1θ0(1))
2 + s2W

n
∑

i=2

Ki(1)T
f
i (1)

}

= − ξe(1)e

sW cW
[T f

3L − s2WQf ], Zµ
θ0

≡ Zµ. (2.13a)

α ≥ 1 : (NC(1))α = (ηθαθα(1))
−1/2ξe(1)(θ0(1))

2·

·
{[

δα1T
f
3L(C1θ0(1))

2 − (1− δα1)s
2
WKα1(1)T

f
α (1)

]

tan θα(1)

+s2W

[

Kα+1(1)T
f
α+1(1) +Kα+2(1)T

f
α+2(1) + · · ·

]

cot θα(1)
}

, (2.13b)

where, specifically for α = 1,

(NC(1))1 = θ0(1)ξe(1)cW sW

{

T f
3L +

n
∑

i=2

Ki(1)T
f
i (1)

}

= ξe(1)eQf . (2.13c)

2.1. n = 2: The Standard Model

Here, n = 2 and the electromagnetic and Standard Model neutral current in-
teractions are reversed from each other when going from one to another branch.
Namely, taking that ξe(0) = ξe(1) = ξe, ξ

2
e = 1, one obtains from relations (2.12)

and (2.13) that

(NC(0))0 = (NC(1))1 ≡ (NC)em = ξeeQ, Aµ = Zµ
θ0(0)

, Zµ
θ1(1)

, (2.14a)

(NC(0))1 = (NC(1))0 ≡ (NC)NC = − ξee

sW cW
[T f

3L − s2WQf ], Zµ = Zµ
θ1(0)

, Zµ
θ0(1)

.

(2.14b)
Clearly, these two interactions are of the same importance.
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3. Determining the form of the gauge group

Clearly, as the number of coupling constants, n, increases (at higher the en-
ergy scale), the two branches will have a potential to significantly differ from each
other. This follows from the fact that the K–coefficients are so different in the two
branches. To see that, for the sake of simplicity, one assigns common angles for
i ≥ 2 in both branches:

g1(0) = g1(1) ≡ g; θi(0) = θi(1) ≡ θi, i = 2, ..., n, (3.1a)

while still having c1(0) = s1(1) = sW . Directly from relations (2.4a), (2.10) and
(2.11), one obtains,

g2i (0)

g2i (1)
=

θ20(0)s
2
1(0)

θ20(1)s
2
1(1)

=
Ki(0)

Ki(1)
cot2 θW = cot4 θW , i = 2, ..., n. (3.1b)

Furthermore, taking into account expressions for K’s, relations (2.10) and (2.11),
we have

0 < Ki(β) < δβ0 cot
2 θW + δβ1, i = 2, ..., n, n > 2, β = 0, 1, (3.2a)

Y

2
=

n
∑

i=2

Ki(β)Ti(β),
n
∑

i=2

Ki(β) = δβ0 cot
2 θW + δβ1, (3.2b, c)

where the hypercharge operator Y is independent of β = 0, 1.

It is obvious that since Ki(0) = Ki(1) cot
2 θW , the only way the expression for

Y/2, relation (3.2b), can be satisfied simultaneously for both, the Glashow and
Weinberg–Salam branches, is that Ti(0) and Ti(1) are related as

Ti(1) =
Ki(0)

Ki(1)
Ti(0) = Ti(0) cot

2 θW , i = 2, ..., n. (3.2d)

But relation (3.2d) is nothing more than rescalling of generators; as the non–Abelian
generators are fixed by normalization condition this can be done only with the
Abelian U(1) generators Yi. Thus, we conclude that higher energy scale partial
true unification is simultaneously describable in both branches only if

G = U2(1)× · · · ×Un(1), Ti(β) ≡ Yi(β), i > 2, β = 0, 1. (3.3)

What kind of higher energy scale partial unifications are allowed separately in
the two branches?

First, suppose that the non–Abelian generators Ti(β) are involved. Group theory
invariably gives for the corresponding Ki(β) = 1. Only β = 0, the Glashow branch,
can accomodate here; namely, with a suitable choice of angles θ2(0), θ3(0),..., every
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Ki(0), i = 2, ..., n, except one, can be scaled to 1. For one Ki(0) that cannot be
scaled to 1, one must be able to rescale the corresponding Ti(0) to accomodate the
relation for Y ; at least one generator Ti(0) has to be the Abelian generator. Hence,
for the Glashow branch we write

G(β = 0) = G′ ×U′(1);

an example for n = 3 being G′ = SU(2)R, U
′(1)=U(1)B−L.

For β = 1, relations (2.11) indicate thatKi(1) < 1, i = 2, ..., n, do not depend on
θW ; no Ki(1) can be rescaled to 1. Hence, every generator Ti(1) of G(β = 1) must
be rescalable in order to accomodate the expression for Y/2. That means that Ti(1)
is the Abelian generator of Ui(1). Equivalently, we have for the Weinberg–Salam
branch that

G(β = 1) = U(1)2 × · · · × U(1)n.

Why these two branches are so different at higher energy scales is indeed puz-
zling. Different gauge groups that go with these two branches are addressed else-
where [3]. Here we discuss only the gauge groups that are admitted by both of these
two branches.

3.1. Uniqueness of interactions

It is very reasonable to require that the physics be the same regardless of the
branches that are used for the description, meaning that the interactions be the
same (unique) when described in either of the branches. This is the essence of the
uniqueness of the partial true unification of interactions. The uniqueness require-
ment restricts G to just U(1)2 × · · ·×U(1)n at an energy scale that corresponds to
n > 2. Let us point out that relation (3.2d) which now explicitly reads as

Ki(0)Yi(0) = Ki(1)Yi(1) ≡ Ki(β)Yi(β), i = 2, ..., n; β = 0, 1, (3.4)

is consistent with the equality of gauge couplings Yi(0)gi(0) = Yi(1)gi(1), i ≥ 2.

Clearly, these facts assure the uniquenesses of the photon, Standard Model
neutral vector boson, as well as of neutral current interactions at any energy scale,
regardless of whether this gauge group is viewed in the Glashow or the Weinberg–
Salam branch.

As a consequence, one may simply write for the neutral current projection
operators for either of the branches (β = 0, 1) the equivalent expressions:

(NC(0))i = (NC(1))i = (NC(β))i ≡ (NC)i, β = 0, 1, i = 2, ..., n. (3.5)

3.2. The second neutral current interaction

Having established that it is G = U(1)2 × · · ·×U(1)n (with n ≥ 2) that cor-
responds to some unification scale, the question is: what kind of neutral current
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interaction one finds just beyond the Standard Model? To answer this question,
one simply has to look at (NC)2. As relation (3.5) indicates, it makes no difference
in which branch we look; let us settle for the Glashow branch, β = 0. Specifying
α = 2 in (2.12b) and taking into account relations (3.1c), one obtains

(NC(0))2 =
ξee

cW

{

Yf cot θ2 −
K2(0)Y

f
2 (0)

s2c2

}

,

which, with relations

Y

2
=

n
∑

i=2

Ki(β)Ti(β), β = 0, 1, (3.6)

becomes

(NC)2 =
ξee

cW

{

Yf cot θ2 −
K2(β)Y

f
2 (β)

s2c2

}

, β = 0, 1. (3.7)

Here, when “evaluating” the right side, one still has to specify β. Of course, the
branch with β = 1 also could have been derived directly by starting with Eq.
(2.13b). In any case, the next level neutral current interaction requires the knowl-

edge of an additional quantum number Y f
2 (β), β = 0 or 1.

4. Mass relations and restrictions on angles

In either of the branches, β = 0, 1, there are two mass terms, the Cartesian and
the polar mass terms; the polar mass term is the result of diagonalization of the
Cartesian mass term:

L(mass) = −1

2

n
∑

i,j=1

Ai
µM

2
ijA

µ
j , (4.1a)

= −1

2

n−1
∑

α,β=0

Zθα
µ M2

θαθβ
Zµ
θβ
, (4.1b)

where Zθα denotes the physical free neutral vector boson field. Utilizing the trans-
formation properties of these fields, relations (2.5) and (2.4), one has:

M2
θαθβ

= δαβ

n
∑

i,j=1

ξiξjCiθαM
2
ijCiθα = δαβM

2
θα , (4.2a, b)

M2
ij = ξiξj

n−1
∑

α,β=0

CiθαM
2
θαθβ

Cjθβ = ξiξj

n−1
∑

α=0

CiθαM
2
θαCjθα = M2

ji. (4.3a, b, c)
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As a consequence, one also has these generic relations:

M2
ii =

n−1
∑

α=0

(Ciθα)
2M2

θα ,
n
∑

i=1

M2
ii =

n−1
∑

α=0

M2
θα . (4.4a, b)

Relations (4.1) to (4.4) are generic; valid for either of the branches, no matter what
gauge group G is in either of these branches.

However, we proceed with gauge group G = U(1)2 × · · ·×U(1)n as the one that
is allowed if the interactions are to be unique in either of the branches, β = 0, 1.
The energy scale just beyond the Standard Model is already reached with n = 3.
Then, remembering that cα(β = 0, 1) = cα, sα(β = 0, 1) = sα, α ≥ 2; s1(0) = cW ,
c1(1) = cW , one finds that for Glashow branch (β = 0), for example, relation (2.4e)
gives:

C1θ0(0) = sW , C1θ1(0) = cW , C1θ2(0) = 0,

C2θ0(0) = cW c2, C2θ1(0) = sW c2, C2θ2(0) = −s2,

C3θ0(0) = cW s2, C3θ1(0) = sW s2, C3θ2(0) = c2.

These, in turn, when substituted into (4.3b) yield,

M2
W = s2WM2

γ + c2WM2
Z ,

M2
22 = c2W c22M

2
γ + s2W c22M

2
Z + s22M

2
θ2 ,

M2
33 = c2W s22M

2
γ + s2W s22M

2
Z + c22M

2
θ2 , (4.5a, b, c)

where Mθ0 = Mγ = 0, Mθ1 = MZ , Mθ2 = MZ′ , and M11 = MW (M22 = MB).
Here M11 is the Cartesian mass of Aµ

1 = Wµ
3 and, as such, of the whole SU(2)L

triplet ~Wµ. Relation (4.5a) is the Weinberg mass relation. Exactly the same mass
relations follow from the Weinberg–Salam branch (β = 1). Furthermore, from
relations (4.5b,c) one also has,

M2
22 − s2WM2

Z = s22(M
2
Z′ − s2WM2

Z), (4.6a)

M2
33 − s2WM2

Z = c22(M
2
Z′ − s2WM2

Z), (4.6b)

from which one has at once:

tan2 θ2 =
M2

22 − s2WM2
Z

M2
33 − s2WM2

Z

. (4.6c)

These relations hold for n = 3; that is, they hold at the energy scale just beyond
the Standard Model. In fact, it is easily seen that s2 is energy scale dependent.
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Namely, for the Standard Model (n = 2), we have M22 ≡ MB = sWMZ and from
(4.6a) we have s2 = 0; but now relation (4.5c) gives M33 = MZ′ . At the energy scale
just beyond the Standard Model (n = 3) we expect MZ′ > MZ , MW ,MB(= M22).
Then it should also be expected that M2

33 > M2
22 > M2

Z . Hence, we have that,

tan θ2 < 1 → 0 < s22 <
1

2
, r =

MZ

MZ′

< 1, (4.6d, e)

that is, s2 is similar to sW .

5. Reducing the second neutral current interaction to the

fermion hypercharge current interaction

The second neutral current interaction, relation (3.7), generally requires the
knowledge of the additional quantum number Y2. However, as is customary, one
demands that under gauge group U(1)2 × · · ·×U(1)n fermions behave in the same

way as in the Standard Model [4]. Here this would mean that for fermions U(1)f2 =
U(1)Y and, as a consequence, the fermions have no quantum numbers associated

with U(1)i, i = 3, ..., n; Y f
i (β = 0, 1) = 0 for i ≥ 3. Then, according to relation

(3.6),

Yf

2
= K2(β)Y

f
2 (β), β = 0, 1,

where it is worthwhile remembering that for n ≥ 3, K2(1) = c22, K3(1) = (s2c2)
2,

etc. (K2(0) = (cot θW c2)
2, K3(0) = (cot θW s2c2)

2, etc.). Specifically, for n = 3,
s2 /=0, s3 = s4 = ... = 0. Hence, for n ≥ 3 there still may be non–elementary
fermion particles allowed which, in addition to Y2(β) /=0, also may have Y3(β),
Y4(β), etc. /=0. An example of such a non–elementary fermion is, of course, a
scalar Higgs particle. Its existence with K3(β = 0, 1) /=0 would assure that s2 /=0.

Coming back to the fermions, it is not difficult to see that from (3.7) one has:

n arbitrary, Y f
i (β = 0, 1) = 0, i ≥ 3 :

(NC)2 ≡ (NC)Y = −ξee tan θ2
cW

(

Yf

2

)

. (5.1a)

Substituting this into (2.6b), we obtain

L(NC; θ2) ≡ LY = gY Ψγµ
Yf

2
ΨZ ′µ, gY = −ξee tan θ2

cW
, Z ′µ ≡ Zµ

θ2
, ξ2e = 1.

(5.1b)
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The Lagrangian density of all fermion neutral current interactions is obtained
from relations (2.12) (or (2.13)) and (5.1):

L(NC) = eξeΨγµQfΨAµ + gNCΨγµ(T3L − s2WQf )ΨZµ + gY Ψγµ
Yf

2
ΨZ ′µ,

(5.2a, b, c)

gNC = − ξee

sW cW
, gY = −ξeet2

cW
= sW t2gNC , (5.2d)

where t2 = tan θ2. To these we add the fermion charge changing Lagrangian density
[5,6]:

L(CC) =
g√
2
(ΨγµT+LΨWµ

+ +ΨγµT−LΨWµ
−), (5.2e)

T±L = T1L ± iT2L, Wµ
± =

1√
2
(Wµ

1 ∓ iWµ
2 ),

where W± represent positive and negative charged vector bosons whose common
mass MW we already encountered in mass relations; Wi, i = 1, 2, 3, is SU(2)L
triplet (see the discussion after relation (2.2)).

The effect of the fermion hypercharge interaction (5.2c) is expected to be small;
namely |gY | = 0.26|gNC | = 0.62e for s2 ≈ sW , for example. Furthermore, since
effective coupling constant gY is small, there is no a priori reason for MZ′ to be
very large.

For purely leptonic processes involving neutrinos, we shall assume that q2 ≪
M2

Z ,M
2
Z′ ,M2

W , where qµ is the neutrino–electron covariant momentum transfer. We
denote with s the total energy squared in the center of mass system and s = 2meEν

in the laboratory frame. The cross–sections are valid for m2
e ≪ s. The contributions

to reactions νee → νee and e+e− → νeνe come from (5.2b), (5.2c) and (5.2e) (with
Fierz rearrangements); possible contributions from exchanges of Higgs particles are
ignored under the assumption that their masses are extremely large. The results
for the Born approximation cross–sections are (G2

F /
√
2 = g2/(8M2

W )):

σ(νee
− → νee

−) =
G2

F s

4π
(1+A+B), σ(νee

− → νee
−) =

G2
F s

12π
(1+A+C), (5.3a, b)

s = 2meEν , (5.3c)

σ(e+e− → νµνµ or ντντ ) =
G2

F s

24π

(

1−A+
3B + C

4

)

, (5.4a)

σ(e+e− → νeνe) =
G2

F s

24π

(

1 +A+
3B + C

4

)

, s = (pe− + pe+)
2, (5.4b, c)
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where

A = s2W
[

4 + (t2r)
2
]

, B =
s4W
3

[

16 + 20(t2r)
2 + 7(t2r)

4
]

, (5.5)

C = s4W
[

16 + 28(t2r)
2 + 13(t2r)

4
]

.

In order to analyse these cross–sections, we have to settle for value of sW . We
determine it from the mass relation (4.5a),

s2W = 1− M2
W

M2
Z

≈ 0.226, (5.6)

where the values of MW ≈ 80.22 GeV and MZ ≈ 91.173 GeV [7] were used.
Incidentally, according to Sirlin, relation (5.6) represents the “on-shell scheme”
definition of sW [8].

The data on νee scattering are available with a good precision [9]:

σνee(exp) = (2.30± 0.42)
G2

F s

4π
. (5.7a)

Setting t2 = 0 and s2W = 0.226 into relation (5.3c), the Born approximation Stan-
dard Model value for the cross–section is obtained:

σνee(SM) = 2.18
G2

F s

4π
. (5.7b)

The difference between the two cross–sections we attribute to the contribution from
the fermion hypercharge interaction. Hence, equating the difference between (5.7a)
and (5.7b) with the difference between (5.3c) and (5.7b), and after solving the
quadratic equation for (t2r)

2 (with s2W = 0.226), we obtain

t2r = 0.45 : 0.45 < t2 < 1 → 0.17 < s22 < 0.5,

0.45 < r < 1 → MZ < MZ′ < 2.2MZ . (5.7c)

The experimental values for the νee scattering cross–sections are given for two
ranges of recoil electron kinetic energy Te [10]:

σνee(exp) = (2.76± 0.15)
G2

F s

4π
, 1.5 < Te < 3.0 MeV, (5.8a)

σνee(exp) = (2.82± 0.12)
G2

F s

4π
, 3.0 < Te < 4.5 MeV. (5.8b)
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On the other hand, with t2 = 0 and s2W = 0.226, relation (5.3d) yields the Born
approximation Standard Model value

σνee(SM) = 2.721
G2

F s

12π
. (5.8c)

Equating the difference between (5.3d) and (5.8c) to the differences between (5.8a,b)
and (5.8c), and using s2W = 0.226, we obtain, respectively,

1.5 < Te < 3.0 MeV, t2r = 0.14, 0.14 < t2 < 1 → 0.02 < s22 < 0.5,

0.14 < r < 1 → MZ < MZ′ < 7MZ , (5.8d)

3.0 < Te < 4.5 MeV, t2r = 0.245, 0.245 < t2 < 1 → 0.006 < s22 < 0.5,

0.245 < r < 1 → MZ < MZ′ < 4MZ . (5.8e)

The pair processes e+e− → νeνe, νµνµ and ντντ are important in stellar mat-
ter at high temperatures (108 to 109 K) and moderate densities [9]. The quantity
of most interest is Q, the energy loss per cubic centimeter per second which, in
addition to σ(e+e− → νν’s), also depends on the available densities of e− and
e+. Unfortunately, the calculations utilize rough approximations making these pro-
cesses, at present, unsuitable for setting the limits on s2 and MZ′ .

6. Discussion and conclusion

The partial true unification of gauge group SU(3)c×SU(2)L×G, where G is
the generalization of U(1)Y , can be made through two branches, the Glashow
and the Weinberg–Salam branches. At the lower energy scale, these two branches
are equivalent. At higher energy scales, while the Glashow branch can accommo-
date many gauge models, the Weinberg–Salam branch can accommodate only G =
U(1)2 × · · ·×U(1)n. Hence, these two branches are equivalent at the higher energy
scale only when G = U(1)2 × · · ·×U(1)n. When the elementary fermions behave as
Standard Model fermions with respect to U(1)2 and are invariant under the rest of
the U(1)’s, and if there is at least one non–elementary fermion particle s(x) with at
least U(1)2,3 quantum numbers different from zero, there will exist a new fermion
hypercharge current interaction. If s(x) is a new Higgs boson, it can easily generate
the mass MZ′ of Z′ [4].

Analysis of purely leptonic processes indicates that mass MZ′ of the new neutral
vector boson Z′, that mediates the fermion hypercharge neutral current interaction,
is in the range accessible to experimental scrutiny in the near future. In this analysis,
we cannot use the definition for θW according to tan θW = g′/g(≡ g2(1)/g1(1))
at the energy scale just beyond the Standard Model [11]. In fact for n > 2 we
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have explicitly that g2(0)/g1(0) = c2 cot θW (Glashow branch) and g2(1)/g1(1) =
c2 tan θW (Weinberg–Salam branch).

The fermion hypercharge interaction changes cross–sections σ(νee) and σ(νee)
by 5% and 4%, respectively, from their Standard Model values. These changes
are significant and overall very close to a typical 2% change that one finds, for
example, in σ(νee) due to electroweak corrections in the Standard Model [12]. As
such, those electroweak corrections also depend on the choice of at least one mass,
the Higgs boson mass (accepting that the top quark mass is about 200 GeV/c2) as
our hypercharge interaction corrections depend on the mass MZ′ .

References

1) H. Georgi and S. Weinberg, Phys. Rev. D17 (1978) 275;

2) S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; S. Glashow, Nucl. Phys. 22 (1961) 579;
A. Salam, in Elementary Particle Physics, ed. by N. Swartholm (Stockholm, 1969), p.
367;
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OGRANIČENJE UNIFIKACIJSKIH BAŽDARNIH GRUPA OPISOM
INTERAKCIJA NEUTRALNIH STRUJA U PROSTORU KONSTANTI

VEZANJA

Formalizam polarnih konstanti vezanja, primijenjen na interakcije slabih struja,
pokazuje da se parcijalno pravo ujedinjenje razmatranih interakcija može načiniti
metodom Glashowa ili Weinberg–Salama. Raspravljaju se rezultati tih pristupa.
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