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1. Part I: Review of relativistic approaches
First, a brief review is presented of the various choices of relativistic dynamics,

and then how one of these choices (the covariant spectator theory) describes the
deuteron form factor measurements recently completed at the Jefferson Laboratory
(JLab). Then, in Part II, a very brief overview is given of the foundations and some
other applications of the relativistic spectator theory.

1.1. Choices of dynamics

Several methods that have been recently used to treat few body systems rela-
tivistically are outlined and diagrammed in Fig. 1. There are two major approaches,
with different options within each approach:

• Hamiltonian dynamics is based on the conventional quantum mechanics of
systems with a fixed number of particles. Quantum mechanical states are
vectors in a Hilbert space, initially defined on a surface in space-time. Dirac
originally identified three distinct cases:

– Instant form quantum mechanics, with states defined on the surface
t = 0;

– Front form quantum mechanics with states defined on the light front
t− z = 0; and

– Point form quantum mechanics with states defined on the hyperboloid
t2 − r2 = constant.
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Fig. 1. Diagrammatic representation of the choices of relativistic dynamics dis-
cussed in the text.

In each of these cases some of the 10 generators of the Poincaré group carry
the states away from the initial surface, and their action on the state cannot
be evaluated without solving a generalized Schrödinger equation. The remain-
ing are kinematic (i.e. do not require the solution of a dynamical equation). In
the familiar instant form, for example, the effect of four of the Poincaré gen-
erators (the Hamiltonian and the three boost operators) all require solution
of a dynamical equation, and for this reason the boost of a state cannot be
calculated without first solving the dynamical problem. This is a significant
disadvantage of the Hamiltonian forms of dynamics.

• Green’s function dynamics is formulated in terms of the matrix elements of
field operators. Two methods are particularly easy to describe in this lan-
guage. When applied to a two-body bound state (for example, denoted by D
for the deuteron)

– the Bethe-Salpeter (BS) theory works with the matrix element

Ψ(x1, x2) ≡ 〈0|T (ψ(x1)ψ(x2)) |D〉 , (1)

– while the covariant spectator theory works with the matrix element

Ψ(x) ≡ 〈n|ψ(x1) |D〉 . (2)

The so-called equal time (ET) formalisms are less easy to classify in this
language, and I include them here because they are more similar to Green’s
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function methods than to Hamiltonian methods. These include approaches
developed by

– Blankenbecler-Sugar and Logunov-Tavkhelidze (BSLT); and

– Phillips, Wallace, Mandelsweig (PWM).

Note that the BS matrix element connects the initial bound state to two final
off-shell particles, while one of the final particles is on-shell in the spectator
matrix element. Note also that the matrix elements (1) and (2) are manifestly
covariant under all 10 generators of the Poincaré group. This considerable
advantage can be maintained only by writing equations for these amplitudes
that use covariant propagators, and this necessarily introduces negative en-
ergy states into the formalism. Those who prefer not to deal with negative
energy states, and the indefinite norms that sometimes accompany them,
must use one of the Hamiltonian formalisms.

The two equal time formalisms constrain the relative off-shell energy of the
two equal mass intermediate particles to zero: k0 = (k10 − k20)/2 = 0, but in
all other respects are guided by field theory. The equal energy constraint in-
troduces many simplifications, but violates covariance and cluster separability
when applied to systems of more that two particles.

For references and a discussion and comparison of these methods see the recent
review papers [1], [2] and [3].

1.2. Applications to the deuteron form factors

Recent measurements of the deuteron elastic scattering observables A, B, and
t̃20 have stimulated theory, and all of the relativistic methods mentioned in the
previous section have been recently used to calculate these observables. Comparison
with the new high precision data is very interesting; for a review see Refs. [1], [2]
and [3]. Here I want to focus only on one aspect of this recent work, which illustrates
the state of the art.

The exact current operator in the spectator theory is shown in Fig. 2 ; other

Fig. 2. Diagrammatic representation of two-body current for the deuteron form
factors in the spectator theory. In diagram (a) the spectator is on-shell (denoted
by the ×) and it is this configuration that gives the spectator theory its name.
Diagrams (bi) are nearly equal to (a), but the small differences are important for
the proof of gauge invariance. Diagram (c) is the interaction current.
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aspects of this theory will be discussed briefly in Part II of this talk. As the figure
shows, the impulse diagrams (a) and (b) require knowledge of the off-shell single
nucleon current. This feature is common to all relativistic approaches based on
composite hadronic degrees of freedom (as opposed to point-like quark degrees of
freedom), and it is important to realize that the needed off-shell nucleon current
operators cannot be uniquely fixed by the theory. In the spectator theory [4] these
currents are well constrained by the the Ward-Takashi identity

qµ j
µ
N (p′, p) = S−1(p) − S−1(p′) , (3)

where S(p) is the propagator of a nucleon with four-momentum p. In applications of
the spectator theory to the NN system, Ref. [5] uses a dressed nucleon propagator
of the form

S(p) =
h2(p)

m− /p
=

h2(p)

Λ−(p)
, (4)

where h(p) is a phenomenological scalar function of p2. The simplest solution of
Eq. (3) gives the following one nucleon current

jµ
N (p′, p) = F0

{

F1(Q
2)γµ + F2(Q

2)
iσµν qν

2m

}

+G0F3(Q
2)Λ−(p′)γµΛ−(p) , (5)

where terms proportional to qµ have been dropped (they are required by the iden-
tity (3) but vanish when contracted into the conserved electron current) and the
functions F0 and G0 are

F0 =
h(p)(m2 − p′2)

h(p′)(p2 − p′2)
−
h(p′)(m2 − p2)

h(p)(p2 − p′2)
,

G0 =

[

h(p′)

h(p)
−
h(p)

h(p′)

]

4m2

p2 − p′2
. (6)

This current has one new form factor , F3(Q
2), which is completely undetermined

except for the requirement that F3(0) = 1. This form factor must be determined
phenomenologically by comparison with data, just as F1 and F2 are determined
from the on-shell scattering measurements.

Another source of uncertainty is the famous ρπγ exchange current, which is
included in the diagram in Fig. 2c. This current is separately gauge invariant and
strongly dependent on the ρπγ form factor, fρπγ(Q2) [6]. The value of fρπγ(0) is
constrained by meson radiative decays, and its contribution to the deuteron form
factors at small Q2 is negligible. Its importance at high Q2 depends strongly on
the assumed dependence of fρπγ(Q2), which is unknown but can be estimated from
quark models. One of the best calculations of this form factor is that of the Rome
group [7].

In Ref. [8] (denoted VODG), the current operator shown in Fig. 2 was used
to calculate deuteron form factors and structure functions. The relativistic wave
functions were taken from Ref. [5]. The VODG calculation used the “standard”
dipole form for the unknown form factor F3

F3(Q
2) =

(

Λ2

Λ2 −Q2

)2

, (7)
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with Λ2 = 0.71 GeV2.

For purposes of this discussion I define the VODG calculation in RIA (an ap-
proximation that replaces the sum of terms shown in Figs. 2b1 and b2 by that in
Fig. 2a, and neglects all interaction currents shown in Figs. 2c, so that the total is
twice that shown in Fig. 2a) as “standard,” and consider the effect of (i) altering
the Q2 dependence of F3, or (ii) adding the ρπγ exchange current. The “standard”
calculation is illustated by the dotted lines shown in the top two panels and bottom
right hand panel of Fig. 3. The effect of changing F3 to a tripole form

F3(Q
2) =

(

Λ2

Λ2 −Q2

)3

, (8)

Fig. 3. Upper pan-
els (A and B) and
lower right panel
(t̃20) compare data
to three theoretical
models based on
VODG: (i) “stan-
dard” case referred
to in the text (dot-
ted line), (ii) model
with the tripole F3

(solid line), and
(iii) model with the
dipole fρπγ (dashed
line). The center
two panels show
the data and mod-
els (ii) and (iii)
divided by model
(i). The lower left
panel shows form
factors: standard
dipole with Λ2 =
0.71 (solid line), di-
pole with Λ2 =
1.5 (short dashed
line), Rome fρπγ

(dot-dashed line)
[7], and the tripole
with Λ2 = 5 (long
dashed line).
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with Λ2 = 5 GeV2 (and continuing to keep fρπγ = 0) is shown by solid lines.
Finally, the effect of adding a ρπγ exchange current using a dipole form factor
with Λ2 = 1.5 GeV2 (and keeping the standard dipole form for F3) is shown by
the dashed curves. [The F3 and ρπγ form factors themselves are compared to the
Rome form factor and the standard dipole (7) in the lower left panel.] To see the
effects on A and B more clearly, the middle two panels show the ratios of A/A0

and B/B0, where A0 and B0 are the standard calculation.

We see that a reasonable adjustment of F3 at high Q2 can give an excellent
description of all of the elastic deuteron observables. This is a remarkable observa-
tion: there is no assurance that an F3 that improves the fit to A will also improve
the fit to B, and in fact we see that no choice of fρπγ improves the description
of both A and B simultaneously. Somehow, an adjustment of the F3 term is just
what is needed to correct the theory. We emphasize that changing F3 is perfectly
permissible within the theory, since the form factor F3, while it must be present,
cannot be determined by on-shell data, and must be treated phenomenologically.
From this point of view the deuteron data have now determined the unknown form
factor F3, and the isoscalar single nucleon current is now fixed. It remains to be
seen whether the same F3 will give excellent results for other electron scattering
observables.

What are we to say about the ρπγ exchange current? My own belief is that this
exchange current is being overestimated, even using the Rome form factor. While
this current is certainly present, it is probably either negligible, or cancelled by the
many other short range currents neglected in these calculations.

1.3. Conclusions to Part I

Some of the things we have learned from the struggle to understand the high
Q2 behavior of electron deuteron scattering (including some things not discussed
here) are that

• relativistic calculations are essential at JLab energies – and JLab data have
stimulated the development of the relativistic theory of composite few body
systems;

• excitations to low mass final states (as in elastic electron–deuteron scattering,
where the mass of the final state W = Md) can be efficiently and correctly
described by an effective theory based only on composite nucleon degrees of
freedom;

• when W is large (in high energy photodisintegration, for example) additional
physics, perhaps involving the explicit appearance of quark degrees of free-
dom, is needed;

• predictions will not be reliable unless the currents are constrained by the
strong interaction dynamics (calculations must be consistent); and
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• electromagnetic currents cannot be completely determined by an effective
theory with composite degrees of freedom.

2. Part II: Review of the covariant spectator theory

The second part of this paper is a very superficial sketch of the spectator theory
and its applications to few body systems.

2.1. Two and three-body covariant equations

Assuming that the dynamics of the two and three body systems is governed by
an irreducible two-body kernel (with no irreducible three body kernels), the equa-
tions that describe two and three body systems of identical particles are illustrated
in Figs. 4 and 5. In these diagrams the symbol × on each line means that that
particle is on its mass shell, and the shaded box is the two body irreducible kernel.

The physical motivation for the spectator theory is best illustrated by exam-
ination of the Faddeev picture showing how the three body interaction emerges
from the infinite sequence of successive two body scatterings. One of the infinite

Fig. 4. Diagrammatic representation of two-body spectator equations: (a) The
scattering equation, with (b) symmetrization of the one boson exchange potential
for identical particles. If the scattering matrix has a bound state pole, represented
by (c), then consistency of the scattering equation near the pole requires that the
bound state vertex function Γ (represented by the triangle) must satisfy equation
(d).

Fig. 5. Diagrammatic representation of three-body spectator equations: Figure
(a) displays the definition of Γ1

2
, the vertex function with particle 1 the spectator

(always on shell) and particle 2 the on-shell interacting particle. This definition
leads to equation (b) for the bound state vertex function Γ1

2
.
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sequence of these Faddeev diagrams is illustrated in Fig. 5a, which shows that the
bound state vertex function Γ1

2
is defined to be the infinite class of interactions

that “end” with particle 1 as a spectator, and particle 2 also on-shell. If the three
particles were not identical, this would lead to a coupled set of six equations for the
six amplitudes Γi

j (with i /=j and i, j ∈ {1, 2, 3}), but if the particles are identical all
of these amplitudes are related by particle interchange to a single amplitude that
is the solution of the equations shown in Fig. 5.

This equation has been solved exactly for a family of one boson exchange models
of nuclear forces [5, 9]. It was found that the three body interaction (as measured
by the binding energy of the triton, ET ) is very sensitive to a parameter ν that mea-
sures off-shell coupling of isoscalar and isovector mesons to nucleons. Specifically,
defining the scalar-NN coupling constant

gsΛ(p′, p) = gs

[

1 + ν
(2m− /p′ − /p)

2m

]

, (9)

so that the interaction depends on ν only when either the incoming or outgoing
nucleon is off-shell, gives the ν dependence of the binding energy shown in the top
panel of Fig. 6. Note that the experimental value of the binding energy is obtained

Fig. 6. Upper panel:
Three body binding en-
ergy as a function of the
off-shell coupling parame-
ter ν. Lower panel: χ2

for the fit to the two-body
data as a function of the
same parameter ν.
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for the choice of ν ≃ 1.6. The lower panel shows that the fit to the two body data is
also improved as ν moves away form zero, and, remarkably, this same choice ν ≃ 1.6
seems to also give the best fit to the two body data. The role of the parameter ν is
discussed in some detail in Refs. [9] and [10].

2.2. Current operators for two and three body systems

The current operator for elastic two-body scattering was already displayed in
Fig. 2 . The operator for two-body inelastic scattering is shown in Fig. 7. It has
been shown that both of these currents are gauge invariant [4].

Construction of a three body current consistent with the Faddeev equation,
Fig. 5b, is more difficult. This current operator was first derived by Kvinikhidze and
Blankleider [11]. A more convenient form is currently being developed [12]. It has
been shown that the three body normalization condition insures the conservation
of charge.

An extensive review of the spectator theory is being prepared.

Fig. 7. Diagrammatic representation of two-body current for photo and electropro-
duction.

2.3. Conclusions to Part II

Space does not permit a more complete discussion here. The following features
of the spectator theory have been discussed extensively in the literature:

• It is manifestly covariant, even under charge conjugation (if the total energy
W is interpreted as |W |).

• It has a smooth nonrelativistic and one-body limit (if the mass of one particle
becomes very large, the two-body equation reduces to a relativistic one body
equation for the lighter particle moving in an instantenous potential).

• Bound states be normalized, and gauge invariant currents calculated consis-
tently.

• Consistent solutions have been obtained for both two and three nucleon prob-
lems.
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• Issues:

– It has been shown (for neutral exchanges in the two-body sector) that
restricting the heavy particle to its mass-shell gives the most accurate
approximation to the generalized ladder (ladder and all crossed ladder)
sum.

– Identical particles are treated by explicitly symmetrizing the kernel. For
one boson exchange models this introduces spurious singularities, which
can be dealt with in a variety of ways.
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NOV NAPREDAK U RELATIVISTIČKOM OPISU MALOČESTIČNIH
SUSTAVA

Kratko se razmatraju neke značajke relativističke teorije za maločestične sustave, s
naglaskom na kovarijantnu teoriju promatrača i njenu jedinstvenu moć da objasni
ishode za deuteronske faktore oblika na visokim Q2.
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