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Using the complete discrimination system for polynomials, we give the exact so-
lutions to Liendrd equation with strong high-order nonlinear terms which include
the elementary functions solutions, elliptic functions solutions and the solutions
expressed with implicit functions. As application, we can easily obtain many ex-
act solutions to some nonlinear equations of mathematical physics such as Kundu
equation, generalized PC equation, Ablowitz equation, Rangwala-Rao equation,
generalized BBM equation, generalized Pochhammer-Chree equation without dis-
persion term and generalized Ginzburg-Landau equation. To our knowledge, the
known results on the exact travelling solutions to these equations in literature can
be derived from our results as special cases.

PACS numbers: 02.30.Jr, 05.45.Yv UDC 532.591, 533.951

Keywords: Lienard equation; complete discrimination system for polynomial, traveling
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1. Introduction

The constructions of exact solutions to nonlinear differential equations have
been investigated extensively using a large number of methods [1-43], such as
inverse scattering method, Backlund transformation, bilinear method, symmetric
method, homogenous balance method, nonlinear variable separate method, tanh-
method, elliptic function expansion method, project Riccati equation method, trial
equation method, sub-equation method, function transformation method and so
on. As a result, many equations have been solved and many new solutions have
been claimed. However, under the traveling wave transformation, if the reduced
ordinary differential equation has the following integral form

dw

VEW)’
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then what we need is only to solve the integral (1). According to the different
parameters, we give different solutions to the integral. This is the so called direct
integral method. Although direct integral method is a routine method, to decide the
parameter’s scope is not easy. Therefore, the key steps are to decide the parameter’s
scopes and to solve the corresponding integral. A mathematical tool named the
complete discrimination system for polynomial [27] is applied to this problem so
that the parameter’s scopes are solved easily. It is just because combined with
complete discrimination system for polynomial the direct integral method becomes
a powerful and efficient method. We utilize these complete discrimination systems
to find the exact solutions to some nonlinear differential equations, and obtain
abundant results [28—39].

In the present paper, we consider the following equations [40—43]:
Pochhammer-Chree equation
Upt — Uttzw — (@10 + azu® + asu®) e =0, (2)
Kundu equation
ity + gy + Blu®u + rlu|*u +ia(jul*u), + is(jul?).u = 0, (3)
Rangwala-Rao equation
Uzt = Prttag + u+iTfalulue =0, (T ==£1), (4)
high-order nonlinear wave equation
Uge — Kgy + b1 + bouP T 4 bgu?Pt =0, (5)
generalized BBM equation
g + duPug + buPuy + cuggr =0, (6)
generalized Pochhammer-Chree equation
gt — Uttza + (D10 + bouP ™ + bgu® 1), = 0, (7)
and generalized Ginzburg-Landau equation
it + b1ty + bolul*Pu + bs|u|*Pu + ib4(|u|2pu)z + ib5(|u|2p)zu =0, p>0. (8

If we consider the traveling wave solutions u(z,t) = a(§) of Eq. (2) and the envelop
traveling wave solution

u(z,t) = PO W), =g —vt, (9)
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of Egs. (3) and (4), then a(§) satisfies the following Liendrd equation
a’ (&) +la+ma® +na® =0. (10)
Under the traveling wave transformation, Eqs. (5)—(7) are reduced to the ODE
a”(&) +la+maP* + na® = 0. (11)
and Eq. (8) is reduced to the ODE
a” (&) + la(§) + ma® ™ (&) + na** ™ (£) = 0. (12)
Here Eq. (10) is a special case of Eq. (11) with p = 2. Eq. (10) has been studied
extensively, so we don’t discuss it, and we only discuss the Egs. (11) and (12). It

is obvious that the results for Eqs. (2) —(8) given in the references [40] and [43] are
special cases of our results.

This paper is organized as follows. In Sec. 2, we give the exact solutions of
Eq. (11). In Sec. 3, we give the exact solutions to Eq. (12). In Sec. 4, we discuss
some applications. The last section is a summary.

2. Exact solution of the (2p+1)-order Liendrd equation

Integrating Eq. (11) once yields

2
(a')?=F(a) = c—la® — szQ aPt? — # a2 (13)

where c is an integral constant. We consider the following cases.

2.1. Casec=0

Take the transformation

w=aP(§). (14)

Then Eq. (13) becomes

= £p(§ = &) - (15)

Denote A = 4(m?/(p+2)?—nl/(p+1)), which is the discriminant of the polynomial
in (15). There are the following three cases.
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Case 2.1.1. A = 0. Then the solution of Eq. (15) is given by

w_m@+U
s fe-se [

Case 2.1.2. A > 0. Then the solution of Eq. (15) is given by

T e L WA= A - /B
~ 1 V=P = VBw-7)}
i) = ] ’

1 o YW =) = flw —7)
A e e TR TR

where n/(p+1) < 0. And

1 {V=(—w+B) — /Blw—)}?

a8 = =5 ] ’
/ 1 {Vr(—w+B) — /—B(w—7)}?
+ p+1(f &) = ,—_67111 o] ,

/ 1 . —y(w+B)+ Bw—17)
+ p+1(§ &) = marcsm wllB =] ,

where n/(p+ 1) > 0. In addition, in expressions (17—-22), we have

2m m?2 nl 2m m?2 nl
LI, Y B LS L L, Y L
p+2 (p+2)2 p+1 p+2 (p+2)2 p+1
- 2n = 2n :
p+1 p+1

Case 2.1.3. A < 0. Then the solution of Eq. (15) is given by

m 2m
—wHV—I- w2 ———w—I
£V(E ) =y In | ZFV Nt

T

w

(16)

(24)
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where [ < 0.

Remark 1. Substituting the formula (14) into the solutions of Eq. (15) will
give the solutions of Eq. (13), and hence gives the solutions of Eq. (11). We omit
these concrete formulas.

2.2. Case c #0

In principle, we can give the corresponding solutions of Eq. (13) according to
the complete discrimination system for polynomial F'(a). But this is a rather com-
plicated thing for the polynomials of the sixth order or still high order. We only
take p = 4 as an example to illustrate our method. Take the transformation

w = a*(&). (25)
Then Eq. (13) becomes
d
/ v — 26— &), (26)
w (c— lw— 27mw3 — nw5>
p+2 p+1
Denote
fw) =w® + qu® +rw + s, (27)
where
_2mp+1) _lUp+1) _cp+1)
S pry ) T T T (28)

From Refs. [27] and [29], the complete discrimination for the polynomial f(w) is
given by

Dy = —-q,

D3 = 40rq — 12¢°,
Dy = 12¢*r — 88r2¢% + 125¢s* + 16013,
Ds = 2000¢s2r® — 900rs%q> + 16¢* > + 108¢°s* — 128r%¢® + 25615 + 3125s*,
Fy = 160r2¢® — 48r¢® + 6255242,
Fy, = —8rq. (29)

Rewrite (26) as
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where A = —n/(p + 1). There are the following eight cases to be discussed.

Case 2.2.1. D5 =0, D, =0, D3 > 0, E5 #0. We have

flw) = (w—a)*(w - B)*(w — 1), (31)
where «, 8 and 7 are real, and a# 8+£+. Then
dw
+2(& — =
5= o v
1 1 1 dw
:a—ﬁ/<w—a_w—ﬁ) VAw(w —7) (3
The corresponding solutions are given by
et Aw(a —v) — e Aa(w — 2
L2660 = T ——tn Walwla -7 - yuals )
N 1 1 arcsin Aw(ﬂ_’}/)—i_Aﬁ(w_PY) (33)
a—B\/—AB(B—7) [Ay(w — B)| ’
1 1 (VerAw(a —7) — y/ada(w — 7))
£ %) = a—03/Aa(a —7) = lw — af
R 1 (VedwE 1) - VadBw—)’ (34)
a =08 /AB(B -7) lw = 5] ’
)= — ! arcsin Awfa —7) + Aa(w —7)
i2(£ 50) T a— B /7—1404(04—’)/) \Av(w _ a)‘
1 1, Val@B—y) - Valfw=)
a—B\/AB(B —7) Jw =B ’
gy = L arcsin Aw(a =) + da(w = 7)
:I:Q(E fO) - o — B /7_140[(0(_7) \A’y(w . a)‘
! L sresin ARG =) + AB(w =) (36)
a—B\/~AB(B—7) [Avy(w = B)] ’
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where €; = £1 and e = +1.
Case 2.2.2. D5 =0, Dy, =0, D3 =0, D3 #0, F5£0. We have

flw) = (w—a)’(w - p)?, (37)

where o and § are real, and a = 3. Then

i2(§—§0)=/(w_a)<w_2;u\/m:a15/<w1a_wlﬂ> Ajgfu_@ '

(38)
The corresponding solutions are given by
1 -2 | Aw
26— 60) = 51\ m
1 1 . Aw(f —a)+ AB(w — «)
B A0 arcsin Aa( = B)] ) (39)
1 -2 | Aw
£2(§ — &) = o540V w_a
1 1 In (\/egAw(B —a) — \/EQAﬂ(w —a) )2 7 (40)
a—p \/AB(B—a) lw — B
where €5 = £1.
Case 2.2.3. D5 =0, Dy =0, D3 =0, Dy #0, F» = 0. Then we have
flw) = (w—a)(w-p), (41)
where « and (8 are real, and «# 5. Then
dw
£2E o) = / (w— )2/ Aw(w — B)
1 [JAww o p) 1 dw
~ Aa(a - p) w— Al 26)/ (w — a)\/Aw(w — ) (42)
The corresponding solutions are given by
B -1 Aw(w — )
26— &) = Aala —B) w—
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oz—l 1 0 (\/EQAw(a—B)—\/EQAa(w—ﬁ))2
+A< 2,8) Aa(a—ﬁ)l m— ] (43)
B -1 Aw(w — B)
26— &) = Aala — B) w—
a— 1 —1 arcsin Aw(a = §) + Aafw = f)
A ( 25) —Aa(a—p) [AB(w — a) ] S
where €5 = +1.
Case 2.2.4. D5 =0, Dy, =0, D3 <0, E3 #0. We have
flw) = ((w=1?+5")?(w - a), (45)

where s > 0. Then

_ b Y2(w — 1) + 62
£2(§ — &) = ap? <arctan o +arctan RISV Sy ey a))
o w O+ 822 |- (6)
2ap (r(w—=1)+ 6 — /Aw(w — @) )" + (v2(w — 1) + 82)
where

1 1 1 1
B = i\/2p2 +5(All—a) — As?), f2= i\/2p2 = 5 (Al —a) = As?),

(o a-1)). e a-1)s)

= (Azaa)mA(z;s) 5) 5= ;(AzaamﬁA (z;) /3) (47)
and we choose 81 and 5 such that £18; = As(l — «/2).

Case 2.2.5. D5 =0, Dy > 0. We have

fw) = (w—a)*(w— o) (w—az)(w—az), o >ay > as. (48)
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Then
dw
+2(6 - 60) = | @)
(w — a)/Aw(w — ar)(w — ag)(w — az)
The corresponding solutions are given by
20 ) a— ac
+2(6 — &) = ———— < cF(p,k I1 k
(5 50) (a—ac)v {C (@7 )+b—ad ((pab_adv )}7 (50)

where we reorder aq, aso, ag, 0, so that ay > as > a3 > ay. Then, when A > 0,
w > ap or w < oy (other case can be obtained similarly, we omit them), the
parameters in (50) are given by

a=as(ag —ay), b=—ai(ag —ay), c=a; —ayg,
d=az—aq, 0= (o —az)(o —ay)(az — o),

i:¢wmliMwmf S et MG

®
0/ m, (52)
(g, n, k) = j do . (53)

o J (1+nsin?p)/1 — k2sin ¢
Case 2.2.6. Ds = 0, Dy = 0, D3 > 0, Ey — 0. We have

f(w) = (w—a)’(w - B)(w - p), (54)

where we reorder «, 3, p, 0, so that a; > as > a3z > a4. Then, when A > 0,
w > ay or w < ay (other case can be obtained similarly, we omit them), we have

—2c

£2(§ — &) = e o e+ EPdF(p,k) = cB(p,k)}, ar=a, (55)
+2(€ - &)= j{(c—l—d) (p k)—dE((p,k)—dcotan(gm/l—k‘zsinch)}, as = «,

(56)
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where these parameters are the same as in (51) and (52). Note,

Pi

E(p, k) :/\/1—k251n2w dip. (57)

0

Case 2.2.7. D5 =0, D4y =0, D3 <0, F5 = 0. We have
flw) = (w—a)((w—1)*+5%), (58)

where we reorder «, 0 so that a; > as. Then

2

d
+2(6 - &) = %F(@, k) + ;— arcsin(ksinp), o =, (59)
Y

—d? In Vl—kQSinzap—&—\/l—stin(p_cd

+2(& — = —F =
(5 £0) ’ym cos o ~ (@71{/‘)7 Q9 a,
(60)
where
= Lartagle— 21 —a)d, b= 2(ay+ax)d— (o — o)
a—2041 az)c 2051 ag)a, —2a1 (6] —2(11—@2@7
2 —_— JR—
c:al—l—i7 d=a; —1—smq, E:3+(al (a2 —1)
m s(a; — az)
777/1:.E‘:l:\/_E‘27—|—:|_7 ’[’)’]‘2:#27 (61)
14+ my

and we choose mi such that Am; < 0. Other parameters are the same as in the
former case.

Case 2.2.8. All remaining cases are such that f(w) has not multiple roots, then
the corresponding solutions are given by hyperelliptic functions. We omit them.

Remark 2. Substituting the formula (25) into the solutions of Eq. (15) given in
the cases 2.2.1— 2.2.8 yields the solutions of Eq. (13), and hence gives the solutions
of Eq. (11). We omit these formulae.

3. Ezxact solutions of (4p+1)-order Liendrd equation

Integrating Eq. (12) yields

ag = —ZCL2 — }%az(szl) — 2pnﬁa4p+2 + 2c. (62)
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Taking the transformation
a(§) = £(W (&), (63)

and substituting it into Eq. (62) gives
4p*m 4p*n
p+1 2p+1

WE = —4p”IW? — + 8pPcW /P (64)

There are the following two cases to be discussed.

3.1. Case c=0
Then Eq. (64) becomes

1 dw
- = o1 . 65
e~ ) 2|p| / V-IW2 — (mW/(p+1)) — (n/(2p+ 1)) (65)

The corresponding solutions of Eq. (65) are given by

1 m mW n
i(f—§o)zz|p|ﬁln —2W—]m +2ﬁ\/—zw2—p+1—2p+l , 1<0,
(66)
ey 1 , 20W +m/(p+1)

) = T e ey

Therefore, we have

<e2p\m(5—£o) +m/(p+ 1))2 —4nl/(2p+1)

W= —4le2pV=1(6—50) , 10, (68)

(e—2p\/—7l(f—§0) + m/(p + 1))2 — 4nl/(2p + 1)

W= —4le—2pV~1(E~Eo)  1<0, (69)

(_82;0\/?1(5*&0) +m/(p+ 1))2 —4nl/(2p+1)

W= 4le2pV—1(¢—&0) , 10, (70)

2
(—em2VTIEE) m/(p 1)) — nl/(2p+1)
4le—2pV~1(~¢0) '

W= 1<0, (71)
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W:% i\/<p7j:1>2 24+1Sm(\/2p(§ 50)) ]%), 1>0. (72)

3.2. Case ¢ #0

If p=1or p=1/2, then this is reduced to the former cases. If p =2 or p = 1/3,
we have discussed it in another paper [31]. We discuss other cases in the following.
First, we point out that if p is a positive integer, then we take Eq. (62), and if p is
a fraction 1/q, then we take Eq. (64). When p is taken as p;/q, where p; and ¢ are
positive integers with (p1,q) = 1, we take the transformation

W =uf. (73)
Substituting (73) into Eq. (64) yields

4p2m 4p?n
2,,2(a+1),, 2 —4p?] TR 1 Sp2eudt2pr 74
g u pru? P T S S (74)

Rewrite Eq. (74) in the integral form

witldy

2p, / '
V=l = (m(pr + D)ut —n/(2p1 + 1) + 20

i*(f §o) =

(75)

For example, when ¢ = 3 and p; = 2, then we have a seventh-order polynomial in
the integrand. If the polynomial has three real roots with multiplicities two and a
single real root, then the right-hand side of (75) is given by

utdu
/(U_al)(U—&z)(u—a3)\/m’ (76)

and its solution is expressed by

/(u—al)(u—ag((iz—as)\/m:/ Vu—ay Z/ u—o:ldz—az;

3
2
= Sl ) + 2w - A= ar+ Y A, (77)

=1

where

1 \/u—a4—\/ozb—oz4

I-:
! \/ozifa4 Vu—ag +a; —ag|’

a; —ay >0, (78)

40 FIZIKA A 18 (2009) 1, 29-44



LIU CHENG-SHI: THE EXACT SOLUTIONS TO LIENARD EQUATION WITH HIGH ...

—2 U — Oy
I; = ——=arctan/ ———, o —aa <0, 79
S—— arctan po— a; — oy (79)

A:_(Oé1+052+053), Al:Dl/Da t=1, 27 3a (80)

and

1 1 1
D=— 042+043 Oé1+0t3 a1 + Qo
Q203 103 102

a%(ag—ag)Jra%(al—ag)Jrag(agfal), (81)

where D is obtained by replacing the i*" volume vector in D by (a1, as,a3)”, where

as = — a1 + araz + asas + (o + e + az)A|,

a1 = (v1ag + aras + azas) A+ arasas, ag = —Aajasas. (82)

Other cases can be given similarly, but we omit them for simplicity.

4. Applications

For brevity, we consider only Eq. (3) and Eq. (8) as examples to discuss ap-
plications. To write the concrete solutions is only a simple exercise, so we omit
them.

4.1. Kundu equation

Under the following condition

3a+2
_dat2s o

¢ = 5 — = —a(e), (83)

a(&) satisfies [43]

I v? avy 3 1 5
a"(©)+ (T —w) al©)+ (8= ) a*(©)+ [v+ 15 Ba+25)(a—25)| a*() =0, (84)
which is just the Liendrd Eq. (10), where | = (v2/4) —w, m = 8 — ar/2 and
n=-~y4(1/16)(3a + 2s)(a — 23).
Remark 3. The results in Refs. [40] and [41] and those in Egs. (2—4) in Ref. [42]
are special cases of our results.
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4.2. Generalized Ginzburg-Landau equation

Under the following condition

v by+2p(bs +bs)

rey — 2 2
a(€) satisfies [43]
a"(€) +la(§) + ma®*1(€) + na"*(€) = 0, (86)
where
= V2 + 4b1w . 2b1by — byv
T w0 T T

_ 4bybs(1 + p)% + (ba — 2pbs) (ba + 2p(bs + b))
n= 5 5 . (87)
4b7(1 +p)
Using the results of Eq. (86) in Sec. 3, we can give many exact solutions to Eq. (8).
To our knowledge, the results for the case ¢ 0 are novel.

Remark 4. It is obvious that our method is simpler than the method in
Ref. [42].

5. Summary

We use the complete discrimination system for polynomials to obtain the exact
solutions to Liendrd equations with (2p 4+ 1)- and (4p + 1)-order nonlinear term.
The solutions include elementary function solutions, elliptic function solutions and
the exact solutions expressed with implicit functions. According to these results, we
can obtain abundant exact traveling wave solutions to many nonlinear evolution
equations. Among these, many solutions are new. Our method is so simple and
direct that it can become a general principle. This shows that the complete dis-
crimination system for polynomials plays an important role in solving the nonlinear
differential equations.
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TOCNA RJESENJA LIENARDOVE JEDNADZBE S NELINEARNIM
CLANOM VISEG REDA I PRIMJENE

Primjenom potpunog diskriminacijskog sustava za polinome, izveli smo tocna rje-
Senja Lienardove jednadzbe s jako nelinearnim ¢lanom viseg reda koja ukljucuju
elementarne funkcije, elipticke funkcije i rjeSenja izrazena implicitnim funkcijama.
Kao primjene, mogu se lako dobiti mnoga to¢na rjeSenja nekih nelinernih jednadzbi
matematicke fizike, kao Sto su Kunduova jednadzba, poopéena PC jednadzba,
Ablowitzova jednadzba, Rangwala-Raova jednadzba, poopéena BBM jednadzba,
poopéena Pochhammer-Chreeva jednadzba bez disperzijskog ¢lana te poopcéena
Ginzburg-Landauova jednadzba. Prema naSim saznanjima, u literaturi poznata
to¢na rjesenja tih jednadzbi za putujuce valova mogu se izvesti iz nasih rezultata
kao posebni slucajevi.
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