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1. Introduction

In a recent paper [1], Jackson discovered an apparent paradox: there is a three-
dimensional (3D) torque and so a time rate of change of 3D angular momentum
in one inertial frame, but no 3D angular momentum and no 3D torque in another
relatively moving inertial frame. (In this paper the paradox examined in Ref. [1] will
be called the Jackson’s paradox.) Two inertial frames S (the laboratory frame) and
S’ (the moving frame) are considered in Ref. [1] (they are K and K’, respectively,
in Jackson’s notation). In S’ a particle of charge ¢ and mass m experiences only
the radially directed electric force, F' = gqE’, caused by a point charge @ fixed
permanently at the origin. Hence, in S’, the subsequent motion of the particle is
outward along the original line making an angle 6’ with the z’ axis. This means
that the 3D vectors r’, p’ and F’ point in the same direction. Consequently both
L/, L' = r'xp’, and the torque T/, T’ = r'xF’, (Jackson’s N’ is denoted as T’)
are zero in S’ see Fig. 1(a) in Ref. [1]. In that figure the charges are considered at
time ¢’ = 0 when the particle of charge ¢ is released at rest with r/(0) = . (The
vectors in the 3D space will be designated in bold-face.)
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Then, in Ref. [1], the same system is considered from the frame S at ¢’ =t = 07.
The S’ frame moves uniformly in the x direction with v = ¢@ in S. (Jackson’s vg, By
are denoted as v, 3.) Hence, relative to S the charge @ is in uniform motion and
it produces both an electric field E and a magnetic field B. This situation, at the
initial time, is shown in Fig. 1(b) in Ref. [1]. The existence of B in S is responsible
for the existence of the 3D magnetic force F(0) =¢ S x B, which points in the
negative y direction and this force provides a 3D torque T on the charged particle.
Consequently a nonvanishing angular momentum of the charged particle changes
in time in S, T = dL/dt.

Here we repeat Jackson’s words [1] about such result: “How can there be a
torque and so a time rate of change of angular momentum in one inertial frame,
but no angular momentum and no torque in another? Is there a paradox? Some
experienced readers will see that there is no paradox - that is just the way things
are, ... ." (my emphasis)

In order to “prove” that there is no paradox, Jackson [1] derived in two ways that
T, in S is different from zero. First, in Sec. II, the torque T, is directly obtained
from the force equation in the laboratory, see Eq. (7) in Ref. [1]. Then, in Sec.
ITI, the common transformations, which are usually considered to be the Lorentz
transformations (LT) (boosts), of the components of the 3D angular momentum L
are written, Eq. (11) in Ref. [1], here (2), and it is shown that L, in S is different
from zero, Eq. (13) in Ref. [1], i.e., that, [1]: “the angular momentum does not
vanish in the laboratory frame K, even if it does in K'.” (As already mentioned,
in our notation K and K’ are denoted as S and S’, respectively.) Furthermore,
using so obtained L., it is shown that dL,/d¢, Sec. III in Ref. [1], is equal to
the torque T, that is found in Sec. II in Ref. [1], i.e., that [1] “The time rate of
change of the particle’s angular momentum obtained via a Lorentz transformation
is equal to the torque directly obtained from the force equation in the laboratory,
as it must.” Because of that Jackson [1] considers that there is no paradox and
that such result is relativistically correct result, i.e., that the principle of relativity
is not violated. In our opinion the paradox remained completely untouched in the
approach from Ref. [1]. What is found in Ref. [1] is that when the 3D vectors and
their transformations (like Eq. (11) in Ref. [1], here (2)) are used then the paradox
is always obtained and, actually, the principle of relativity is violated.

In this paper, as in Ref. [2], it will be first shown that the usual transformations
of the components of the 3D vector L, which are given by Eq. (11) in Ref. [1],
here (2), are not the LT. Furthermore, it will be shown, as in Ref. [2], that the
real cause of the paradox is - the use of 3D quantities, e.g., E, B, F, L, T, their
transformations and relations. In Ref. [2], instead of using 3D quantities, it is dealt
from the outset with 4D geometric quantities. In that treatment, the paradox does
not appear and the principle of relativity is naturally satisfied. In this paper we
shall briefly repeat some parts of the consideration from Ref. [2], but now in the
form which is better suited for students and teachers. It is worth noting that exactly
the same paradox appears in the Trouton-Noble experiment, see, e.g., Ref. [3] and
references therein.
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2. A brief summary of geometric algebra

The calculations in Ref. [2] (also in Ref. [3]) and in this paper are performed in
the geometric algebra formalism. Physical quantities will be represented by 4D ge-
ometric quantities, multivectors, that are defined without reference frames, i.e., as
absolute quantities (AQs) or, when some basis has been introduced, they are rep-
resented as 4D coordinate-based geometric quantities (CBGQs) comprising both
components and a basis. For simplicity and for easier understanding only the stan-
dard basis, described below, will be used.

Here, for readers’ convenience, we provide a brief summary of geometric algebra.
Usually Clifford vectors are written in lower case (a) and general multivectors (Clif-
ford aggregate) in upper case (A). The space of multivectors is graded and multivec-
tors containing elements of a single grade, r, are termed homogeneous and usually
written A,. The geometric (Clifford) product is written by simply juxtaposing mul-
tivectors AB. A basic operation on multivectors is the degree projection (A), which
selects from the multivector A its r— vector part (0 = scalar, 1 = vector, 2 = bivec-
tor ....). The geometric product of a grade-r multivector A, with a grade-s multivec-
tor B, decomposes into A4, B; = (AB) , +(AB) ., ,...+(AB) |,_. The inner
and outer (or exterior) products are the lowest-grade and the highest-grade terms
respectively of the above series; A, - B; = (AB) r—s| and A. A By = (AB) st
For vectors a and b we have: ab = a-b+ a A b, where a -b = (1/2)(ab + ba),
aANb=(1/2)(ab — ba).

In this paper, the notation will not be the same as in the above mathematical
presentation. Namely some 1-vectors will be denoted in lower case, like u, v (the
velocities), = (the position 1-vector), p (the proper momentum), while some others
in upper case, like the 1-vectors of the electric and magnetic fields E and B respec-
tively, the torques N and Ng, the angular momenta M, and M, the Lorentz force
K. Bivectors will be denoted in upper case but without subscript that denotes the
grade. Thus the electromagnetic field F', the torque N and the angular momentum
M are all the bivectors.

In, e.g., Ref. [4], one usualy introduces the standard basis. The generators of
the spacetime algebra (the Clifford algebra generated by Minkowski spacetime)
are taken to be four basis vectors {y,},p = 0,...,3, satisfying v, - 7, = N =
diag(4+ — ——). This basis, the standard basis, is a right-handed orthonormal frame
of vectors in the Minkowski spacetime M* with v in the forward light cone. The
v (k= 1,2,3) are spacelike vectors. The 7, generate by multiplication a complete
basis for the spacetime algebra: 1, v., vu A Yoy YuV5, V5 (2* = 16 independent
elements). 75 is the right-handed unit pseudoscalar, v5 = v A v1 A y2 A v3. Any
multivector can be expressed as a linear combination of these 16 basis elements of
the spacetime algebra. For all mathematical details regarding the spacetime alge-
bra reader can consult Ref. [4]. It is worth noting that the standard basis {v,}
corresponds, in fact, to the specific system of coordinates, i.e., to Einstein’s system
of coordinates. In Einstein’s system of coordinates, the standard, i.e., Einstein’s
synchronization [5] of distant clocks and Cartesian space coordinates z*, are used
in the chosen inertial frame. However, different systems of coordinates are allowed

FIZIKA A (Zagreb) 16 (2007) 4, 207-222 209



IVEZIC: JACKSON’S PARADOX AND ITS RESOLUTION BY THE FOUR-DIMENSIONAL . . .

in an inertial frame and they are all equivalent in the description of physical phe-
nomena. For example, in Ref. [6] two very different, but physically completely
equivalent, systems of coordinates, Einstein’s system of coordinates and the system
of coordinates with a nonstandard synchronization, the “everyday,” radio (“r”),
synchronization, are exposed and exploited throughout the paper. For simplicity
and for easier understanding, we shall mainly deal with the standard basis, but
remembering that the approach with 4D geometric quantities holds for any choice
of basis in M*.

3. The comparison of the usual transformations and the
LT

One should first make a remark regarding the figures in Ref. [1]. Both figures
should contain the time axes, too. Fig. 1(a) (Fig. 1(b) and Fig. 2) is the projection
onto the hypersurface t' = const. (t = const.); the distances are simultaneously
determined in the S’ (S) frame. The LT cannot transform the hypersurface ¢’ =
const. into the hypersurface t = const., since the LT mix the spatial and temporal
components of any 4D quantity. Hence, due to the relativity of simultaneity, the
distances that are simultaneously determined in the S’ frame cannot be transformed
by the LT into the distances simultaneously determined in the S frame. In Fig. 1(a),
the coordinates of the events associated with charges ¢ and ), which are at rest in
S, are (ct;, = 0,2y, y,,%, = 0) and (ct'Q = O,x’Q =0,y = O,zé = 0); both events
are on the same hypersurface ¢ = 0. The coordinates of the same events in the
laboratory frame .S, which are obtained by the LT, are (ct, = 'yﬁx;, g = 'y:rf], Yqg =
Ygs 2¢ = 0) and (ctg = 0,2¢ = 0,yq = 0,2¢ = 0). Now these events are not on
the same hypersurface ¢t = 0. This explains why ¢’ = const cannot be transformed
by the LT into the hypersurface ¢ = const. and why both figures would need to
contain the time axes as well. Obviously, such figures could be possible for the
Galilean transformations with absolute time, but for the LT they are meaningless.

In Sec. ITI of Ref. [1], Jackson discusses “Lorentz transformations of the angular
momentum between frames.” He starts with the usual covariant definition of the
angular momentum tensor M* = ztp¥ — a¥pH, Eq. (8) in Ref. [1]. Notice that the
standard basis {7, }, i.e., Einstein’s system of coordinates, is implicit in that defini-
tion. In Ref. [1] the vector L is called the angular momentum and its components
L; are identified with the “space-space” components of M*”. However, a physical
interpretation is not given for another vector L;. Its components L; ; are identified
with the three “time-space” components of M*" (we denote Jackson’s K; with L ;,
K with L;). The same identification is supposed to hold both in S’, the rest frame
of the charges ¢ and @,

L= (1/2)emM™, L, =M", (1)

and in S, the laboratory frame, the same relations as (1) but with unprimed
quantities. Thus, it is assumed in Ref. [1] that the components L; and L;; are
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the components of M*¥ and accordingly L; and L;; transform in the same way

as the corresponding components of M#*" transform under the LT. For exam-
ple, M2 component, which is Lz according to (1), transforms under the LT as
M2 = (M2 + BM'°?). This assumption then leads to the usual transformations
of the components of L that are given by Eq. (11) in Ref. [1], which are

L, = L/17L2 = ’Y(LIQ - /6[43)7 Lz = ’Y(Lé + ﬂLig)- (2)

Of course, the same procedure of the identifications in both frames S’ and S
would give the transformations for the components L; ;,

Liy=Liy, Lig = v(Li o + BLy), Lig = v(Lj 3 — BLS). (3)

Jackson [1] did not write these usual transformations for L;; (3), since in Ref. [1],
as already said, the physical interpretation is not given for L;.

The characteristic feature of these usual transformations (2) and (3) is that the
components, e.g., L; in S, are expressed by the mixture of components L, and L;ﬂ-
from S’. This causes that the components of the 3D angular momentum L do not
vanish in the laboratory frame S, even if they do in S’. In the case considered in
Ref. [1], L3 is different from zero due to the contribution from Lj ,, see Eq. (13) in
Ref. [1]. The time rate of L3 is calculated in Sec. III in Ref. [1] and it gives that
the torque T3 is different from zero in S although it vanishes in S’.

It is worth noting that the result for T3 in Ref. [1] can be simply obtained in
another way, i.e., by means of the usual transformations for the 3D torque. Namely,
in the same way as discussed above (Egs. (2) and (3)), we can determine the
components T; of the torque T (T = dL/dt) and the components T ; of another
torque T; (T; = dL;/dt) by the identification in both frames with the “space-
space” and the “time-space” components, respectively, of the torque four-tensor
N# Ty = (1/2)ega N*, Ty ; = T, which gives the transformations

T, = T, To=v(T; - BT]3), T5 = (T35 + AT} ,),
Tia = Tiy Too=9(Tip + BT3), Tes =(T{ 5 — BT). (4)

Again, the transformed components T; are expressed by the mixture of components
T, and Tt’, .- Hence, the components of “physical” torque T do not vanish in S, even
if they do in S’. Observe that Jackson [1,7] and other authors consider that only
the “space-space” parts, L; and T;, i.e. the 3D vectors L and T, are physical
quantities. (Actually, it is almost generally accepted that the covariant quantities,
e.g., M NHF are only auxiliary mathematical quantities from which “physical”
3D quantities, L, T are deduced.) For the problem considered in Ref. [1] all T}, are
zero but the component T3 in S is #0 due to the contribution from 7} ,. It can be
easily shown that T3 obtained from (4) is equal to T, which is found in Secs. II
and IIT in Ref. [1]. So, all three methods for the calculation of T5 give the same
result - the torque T3 is different from zero in S although it vanishes in S/, which
means that the principle of relativity is violated when the 3D quantities and their
transformations are used.
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It should be noted that the expressions for E and B, Egs. (3a) and (3b) in
Ref. [1], are also obtained by means of the usual transformations for these 3D fields,
Ref. [7] Egs. (11.148) and (11.149). In Ref. [7], these transformations are derived
in a completely analogous way as it is used for the derivation of (2), (3) and (4).
Namely the components of B and E are identified with the “space-space” and the
“time-space” components, respectively, of the electromagnetic field strength tensor
Frv In S, this identification yields

Bl = (1/2¢)ei F'"*, E,=F", (5)

and the same relations but with unprimed quantities are supposed to hold in S,
see Ref. [7] Sec. 11.9. Since the components of B and E are considered to be the
components of F*¥ they, B; and F;, transform in the same way as the correspond-
ing components of F*¥ transform under the LT. (It is worth noting that Einstein’s
fundamental work [8] is the earliest reference on covariant electrodynamics and on
the identification of components of F** with the components of the 3D E and B.)
In that way the usual transformations for the components of B and E are obtained

By = Bj, By=1(B;— BE3/c), Bs =v(Bs+ BE;/c),
Ey = Ei, Ey=v(Ej+ BcBy), B3 =v(E5 — fcBy), (6)

see, e.g., Ref. [7] Eq. (11.148). (The usual transformations for the components of
the 3D B and E (6) were derived by Lorentz and Poincaré [9], and independently by
Einstein [5], and subsequently quoted and used in different problems in almost every
textbook and paper on relativistic electrodynamics.) The main feature of the usual
transformations (6) is that, e.g., the transformed components B; are expressed by
the mixture of components Ej and By,. If in S’ there is only an electric field, as in
the example considered in Ref. [1], then, according to (6), the observers in S will
“see” both the transformed electric field and the new magnetic field, as in Ref. [1]
Egs. (3a) and (3b).

The comparison of the identifications (5) and (1) (and the same for T;, T} ;)
shows that the components L; (T;) correspond to —B; and L, ; (T;;) to —E;. In all
these identifications the components of the 3D vectors L, L; (T, T;) and B, E are
written with lowered (generic) subscripts, since they are not the spatial components
of the 4D quantities. This refers to the third-rank antisymmetric € tensor too. The
super- and subscripts are used only on the components of the 4D quantities.

In Refs. [10-13], several objections were raised on the derivation of the usual
transformations for B and E (6) and it was shown that the transformations (6) differ
from the LT of the 4D quantities that represent the electric and magnetic fields.
The same result was obtained in Refs. [2] and [3] for the usual transformations of
L and Ly, (2) and (3), and T and T4, (4). Some of these objections will be quoted
here.

(i) First, F** (M*¥, N*) are only components (numbers) that are (implicitly)
determined in the standard basis {,}, i.e., in Einstein’s system of coordinates. In
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another system of coordinates that is different than the Einstein system of coor-
dinates, e.g., differing in the chosen synchronization, all above identifications are
impossible and meaningless. Let us explain it in more detail. As already mentioned,

(1385

in Ref. [6] a drastically different, nonstandard, “r” synchronization is also exposed
and exploited throughout the paper. The “r” synchronization is commonly used in
everyday life and not Einstein’s synchronization. In the “r” synchronization there
is an absolute simultaneity. As explained in Ref. [14]: “For if we turn on the radio
and set our clock by the standard announcement ”...“at the sound of the last tone,
it will be 12 o’clock,” then we have synchronized our clock with the studio clock
according to the “r” synchronization. The components z# of the position 1-vector
x in the {r,} basis (with the “r” synchronization) are connected with the com-
ponents z* of the same x in the standard basis {7,} by the following relations

20 = 20 — 2! — 22 — 23, 21 = 2%, Ref. [6]. It is seen that the time component
T

T
9 in the {r,} basis is expressed by the combination of the time z° and space '
components from the standard basis {v,}. Observe that both bases are taken in
the same reference frame. A similar result holds for the components F*¥ (MM,
NF) in the {r,} basis. For example, Ref. 6], F}'* = F'0 — F'2 — F13 which shows
that the “time-space” components in the {r,} basis are expressed by the mixture
of the “time-space” components and the “space-space” components from the {v,}
basis. If it is supposed that the identification (5) holds in the {r,} basis as well,
i.e., that By, = F!°, then it follows that Ey,. = E; + ¢Bs — ¢Bs. The electric field
in the {r,} basis is the combination of the electric field and the magnetic field
from the {v,} basis. Thus only in the {v,} basis it holds that E; = F® (5) and
similarly L;; = M% (1), T;; = N, etc. This is the reason why we always put the
quotation marks in the expressions “time-space” and “space-space.” This consid-
eration explains the above mentioned assertion that the identifications (5), (1) and
those for T;, T;; are impossible for some nonstandard synchronization, i.e., that
the components are numbers that depend on the chosen system of coordinates.
(ii) However, components tell only part of the story, while the basis contains the
rest of the information about the considered physical quantity. In the 4D spacetime,
the physical quantity is not F'*”, since these components depend, e.g., on the chosen
synchronization, but the 4D geometric quantity, F' = (1/2)F""~, A+~,, which is the
same quantity for all relatively moving inertial frames and for any chosen system of
coordinates, see Eq. (8) and the discussion before Eq. (20). This fact is completely
overlooked in all usual covariant approaches and in the above identifications and
transformations. They deal only with components, which are implicitly determined
in the standard basis. The identification (5) completely ignores the existence of
the bivector basis v, A 7,. In all usual approaches, the 3D vectors, e.g., B’ and
E' in S, and B and E in S, which are geometric quantities in the 3D space, are
constructed multiplying six independent components of F'#¥ and F"¥ (defined in
the 4D spacetime) by the unit 3D vectors i', j’, k' in S’ and i, j, k in S, as in, e.g.,
Eq. (11.149) in Ref. [7],

E=7(E - §xB)+(*/y+1)8(53 E). (7)

The components, e.g., F; in S, are determined by the usual transformations (6) from
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the components E! and B; in S’, but there is no transformation which transforms
i, j/, k' from S’ into i, j, k in S. Hence it is not true that E = E1i+ Egj + Egk is
obtained by the LT from E'=E}i' + E5j’ +E3k’ and B’. The bivector basis vy, A,
in the 4D spacetime is quite different than the basis {i, j, k} in the 3D space and
there is no mathematically correct procedure for their identification. If, regardless
of it, one assumes that in ', e.g., Ebj’ is identified with F’2045 A 7)), then it is
not possible to identify Eoj with F2%95 A g in S, since the term ¥4 A v{ does not
transform into va A y0; Y2 Ao = Y(¥4 A Y — Bv5 Ay)-

On the other hand, 1-vectors of the electric field E and the magnetic field B
are defined in a mathematically correct way in terms of the electromagnetic field
F (bivector) by the relations (12); all 4D quantities in (12) are AQs, i.e., they are
defined without reference frames. When some basis is introduced then, e.g., E is the
same quantity for all relatively moving inertial frames and for any chosen system
of coordinates

E = FE"y, = El'ry = E/H’Y,/L = E;MTL? (8)

where all primed quantities are the Lorentz transforms of the unprimed ones. The
components transform by the LT and the basis by the inverse LT leaving the whole
4D CBGQ unchanged. (The LT in the {r,} basis are given in Ref. [6].) If the
standard basis is chosen, then the components E* of E transform under the LT as
the components of any 1-vector transform, as in (22),

EO _ ’Y(E/O +ﬂE,1), El _ ’Y(Ell +ﬂElO)7 E2,3 _ E/2’3. (9)

These transformations are relativistically correct LT and, according to them, the
components E'* transform by the LT again to E¥, there is no mizing of components.
Then, in contrast to the usual construction of the 3D vectors, the components E'*
and FE* are multiplied by the unit 1-vectors 72 and -y, respectively, and both
the components and the basis 1-vectors in S are obtained by the LT from the
corresponding quantities in S’. The electric field E'*vy, from S’ transforms by the
LT again to the electric field E¥~, in S. Moreover, these LT refer to the same 4D
quantity, as in (8). This is not the case with the usual transformations (6) and (7).

The transformations that do not refer to the same 4D quantity are not the
LT, but we call them the “apparent” transformations (AT). According to that, the
transformations (4) for T, (2) for L (Eq. (11) in Ref. [1]) and (3) for L;, are not
the LT, but they are the AT of the 3D T and L. In Refs. [10—12] it is explained in
detail that the usual transformations of B and E, (6) and (7), or [7] Eqgs. (11.148)
and (11.149), are the AT and not the LT (a fundamental achievement). In fact,
as shown in Ref. [2], all transformations of the 3D vectors p, F, E, B, L, T, etc.
are the AT and not the LT. This also means that equations with them, like Eq.
(4) (dp/dt = F = ¢E + qu x B) and Eq. (5) (dL/dt = T) in Ref. [1], are not
relativistically correct equations. Thus, the fact that in Ref. [1] the same result,
T’ = 0 but T=0, is obtained by two different methods of calculation does not mean
that the calculations are relativistically correct and that the principle of relativity
is satisfied.
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4. Definitions of 4D quantities

The relativistically correct treatment of the problem considered in Ref. [1] and
the resolution of Jackson’s paradox are given in Ref. [2], Secs. 4-4.3, using 4D
torques N, Ny and N;. Here we shall only briefly expose the consideration from
Secs. 2, 4, 4.1 and 4.3 of Ref. [2].

In almost all usual treatments of the electromagnetism, both in the tensor for-
malism and in the geometric algebra formalism, the theory of the electromagnetism
is presented assuming that the components F*¥ do not have an independent ex-
istence but are defined either by the components of the 3D E and B, Eq. (5), or
by the components of the electromagnetic potential A, F*¥ = 9FAY — 9¥ A*. In
Ref. [15], an axiomatic formulation of the classical electromagnetism is presented
that deals with the electromagnetic field F' (bivector) as the primary quantity for
the whole electromagnetism. Only the field equation with F' is postulated

OF = j/ege, O-F+ONF = j/eoc. (10)

The source of the field is the electromagnetic current j, which is a 1-vector field
and 0 is the gradient operator (a 1-vector field). (A single field equation for F' was
first given by M. Riesz [16].) The F field yields the complete description of the elec-
tromagnetic field and, in fact, there is no need to introduce either the field vectors
E and B or the potential A. For the given sources, the Clifford algebra formalism
enables one to find in a simple way the electromagnetic field F. Namely the gra-
dient operator 9 is invertible and (10) can be solved giving that F' = 971(j/eoc).
(For more detail see Ref. [15].) In that way we can determine F(z) for a charge Q
moving with constant velocity ug (1-vector), which is

F(z) = kQ(x A (ug/e)/ | A (ug/e)l (11)

where k = 1/4meg. For the charge @ at rest, ug/c = . Instead of the usual
identification of E; and B; with components of F*”, (5), we construct in a math-
ematically correct way, i.e., by a decomposition of F', the 4D geometric quantities
that represent the electric and magnetic fields. F' can be decomposed into 1-vectors
of the electric field E and the magnetic field B and a unit time-like 1-vector v/c as

F =(1/c)ENnv+(IDB) - v,
E =(1/¢)F-v, B=—(1/A)I(F Av), (12)

see [11]. In (12) I is the unit pseudoscalar. (I is defined algebraically without
introducing any reference frame, as in Ref. [17], Sec. 1.2.) v is the velocity (1-vector)
of a family of observers which measures F and B fields. Since F' is antisymmetric,
it holds that F -v = B -v = 0, which yields that only three components of E
and three components of B are independent quantities. However it does not mean
that three spatial components of E, or B, are necesarilly independent components.
Namely F and B depend not only on F but on v as well. Hence, the form of v in
a given inertial frame will determine which three components are independent.
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From (12) and the known F, (11), we find the 1-vectors E and B for a charge
(@ moving with constant velocity ug

E = (D/S)(xNug) -],
B = (=D/I(x Aug Av), (13)

where D = kQ/ |z A (uQ/c)|3. Note that B in (13) can be expressed in terms of E
as

B = (1/¢)I(ug A E Av). (14)

When the world lines of the observer and the charge @ coincide, ug = v, then (13)
yields that B = 0 and only an electric field (Coulomb field) remains. E and B from
(13) are AQs. They naturally generalize the expressions for the 3D E and B, Egs.
(3a) and (3b) in Ref. [1], to the 4D spacetime.

Furthermore, instead of the covariant form of the Lorentz force, Eq. (A2) in
Ref. [1] (only components in the implicit {~y,} basis), we deal with the Lorentz
force as an AQ),

Ky, = (¢/c)F -u. (15)

Using the decomposition of F into F and B, (12), this Lorentz force can be written
as

Ki = (q/c)[(1/c)ENv+(IB)-v]-u, (16)

where u is the velocity (1-vector) of a charge g. Particularly, from the definition of
the Lorentz force K1, = (¢/c)F -u and the relation E = (1/¢)F -v it follows that the
Lorentz force seen by an observer comoving with a charge, u = v, is purely electric
K, = qF. Hence our equation of motion of a charge ¢ is

mdu/dr = (q/c)[(1/c)E Av+ (IB) - v] - u, (17)

which replaces (4) from Ref. [1]. In that equation 7 is the proper time of the particle,
u is the velocity 1-vector of the particle that is defined to be the tangent to its world
line.

The 4D AQs, the angular momentum M and the torque N (bivectors) for the
Lorentz force K and manifestly Lorentz invariant equation connecting M and N
are defined as

M=xzAp, N=zAKp; N=dM/dr, (18)

where z is the position 1-vector and p is the proper momentum (1-vector) p = mu.
When M and N are written as CBGQs in the {v,} basis, they become

M = (1/2)M"y, Ay, MM =abtp’ —a¥ph,
N = (1/2)N"v, Avy,, N* =z!K} —z"KY}. (19)
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The components, e.g., N*¥ are determined as N*¥ =~ - (y*- N) = (v Ay*)- N.
We see that the components M*" are identical to the covariant angular momentum
four-tensor given by (A3) in Ref. [1]. However M and N from (18) are 4D geometric
quantities, the 4D AQs, whereas the components M*” and N*” that are used in
the usual covariant approach, e.g., (A3) in Ref. [1], are coordinate quantities, the
numbers obtained in the specific system of coordinates, i.e., in the {v,} basis.
In contrast to the usual covariant approach, M and N as 4D CBGQs are also
4D geometric quantities, which contain both components and a basis, here bivector
basis 7y, Av,. The essential difference between our geometric approach and the usual
covariant picture is the presence of the basis. The existence of a basis implies that
every 4D CBGQ is invariant under the passive LT; the components transform by
the LT and the basis by the inverse LT leaving the whole 4D CBGQ unchanged. This
means that a CBGQ represents the same physical quantity for relatively moving
4D observers. Hence it holds that, e.g.,

N = (1/2)N'#~ Avl, = (1/2)N" 5, A, (20)

where all primed quantities are the Lorentz transforms of the unprimed ones, see
also (8). When physical laws are written with such Lorentz invariant quantities, 4D
AQs or 4D CBGQs, then they automatically satisfy the principle of relativity. In the
standard approach to special relativity [5], the principle of relativity is postulated
outside the framework of a mathematical formulation of the theory. There, Ref. [5],
it is also considered that the principle of relativity holds for the equations written
with the 3D quantities.

Here, as in Ref. [2], we introduce new 4D torques as AQs, 1-vectors Ny and N;.
The same decomposition can be made for N as for F', (12). N is decomposed into
two 1-vectors, the “space-space” torque N, and the “time-space” torque Ny, and
the unit time-like 1-vector v/c as

N (v/c) - (INg) + (v/c) N Ny,
N, = I(NAwv/c), Ny=(v/c)-N; Ns-v=DN-v=0. (21)

Only three components of Ny and three components of IV; are independent since
N is antisymmetric. Here again v is the velocity (1-vector) of an observer who
measures Ny and N;. Again, as for F and B, the torques N, and N; depend not
only on the bivector N but on v as well. The relations (21) show that Ny and N;
taken together contain the same physical information as the bivector N.

When N, and N; are written as CBGQs in the {~,} basis, they are
Ny = Nlv, = (1/20)50‘5””]\[&511”7,,, Ny = (1/e)N*v,y,.
In the frame of “fiducial” observers, in which the observers who measure 1-vectors
E, B, K, Ny and N; are at rest, the velocity v is v = ¢p. In that frame with the

{~u} basis (it will be called the vo-frame) v* = (c,0,0,0). Let us now take that the
S frame is the yp-frame. Then in S, N? = N = 0, and only the spatial components
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remain. N! components are N! = N%3 = xQK% —xBK%, N2 = N3l and N3 = N12.
Comparison with the identification T; = (1/2)e;, N*! shows that in the ~o-frame
the components of the 1-vector Ny correspond to components of “physical” 3D
torque T, T; = N!, and similarly T; ; = N;. Hence, only for “fiducial” observers
and the {v,} basis, i.e., in the yy-frame, one can deal with components of two 3D
torques T and Ty; all siz components are equally well physical. However, even in
that frame the relativistically correct geometric quantities are not 3D vectors T
and Ty, but 1-vectors Ny and N;. The whole discussion with the torque can be
completely repeated for the angular momentum replacing N, Ny and N; by M,
Mg and M. In the ~yy-frame components of 1-vectors M, and M, correspond to
components of L and L; respectively in the usual 3D picture.

Of course, it holds that, e.g., Ny as a CBGQ is a Lorentz invariant quantity,
Ng = N}y, = N¢#y,, where again all primed quantities are the Lorentz transforms
of the unprimed ones. The components of Ny (N;, My, M;, E, B, ..) transform
under the LT as the components of any 1-vector transform

NI = 7(ND - BND), NI = 5(N} - GND), NP = N (2

The LT of N}, M#, M}" and of E*, B*, (9), are of the same form. In contrast to
all mentioned AT for the components of the 3D vectors, e.g., (4), (2) and (3), and
(6), the components N¥ transform again to N#; there is no mizing of components,
as in (9).

Furthermore, we write N from (18) using the expression for K and equation
(11) for F as

N = (Dg/e®)(u - @)(uq A ). (23)
N, and N; are then determined from (21) and (23)
Ny = (Dg/c¢*)(u-z)I(x AvAug),
Ny = (Dg/S)(u-2)[(z Aug) - v]. (24)

Comparison with (13) shows that Ny and N; can be expressed in terms of B and
FE as

Ns = Q(u ’ I)B,
Ne = (¢/c)(u-z)E. (25)
As already said, in connection with (13), when ug = v then B =0 and N; =0 as

well.

5. Resolution of Jackson’s paradox using 4D torques

The knowledge of N as an AQ, (23), enables us to find the expressions for N as
CBGQs in S and S. First let us write all AQs from (23) as CBGQs in ', the rest
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frame of the charge @, in which ug = ¢yj. Then N = (Dg/c)(v - z)(7) A z), and in
the {7},} basis it is explicitly given as

N = (N"5, Ay, = N6 %) + N (5 A ),
N = (Dg/c)(u*z),)a", N"* = (Dq/c)(u*z])z">. (26)

1 2 _

The components z'# are z'* = (20 = ct’,2't,22,0) where 2'' = 1/ cost’,
r'sing’. In S’ u = u'ty,, where u'* = da'* /dT = (%, u'*,u2,0). The components
N'# that are different from zero are only N’°* and N"02.

In order to find the torque N in S, we now write all AQs from (23) as CBGQs
in S and in the {v,} basis. In S the charge @ is moving with velocity ug =

Yocv0 + YoBgcey, where Bg = |ug|/c and vg = (1 — ﬁ%)’l/Q. Then N is
N = (1/2)N*5, Ay = N9 A1+ NP2y Aye + N2y Avye,  (27)
or explicitly it becomes

N = (Dq/e)(w'z,) o' — Bar®)(vo A)
+y07% (0 A v2) + Bover (1 A 2)]- (28)

Now the components N#* that are different from zero are not only the “time-space”
components N°! and N°? but also the “space-space” component N'? = BoN 02,

We note that another way to find N as CBGQ in S, (28), is to make the LT of
N as CBGQ in 5, (26). Of course, according to (20), both CBGQs are equal, N
((26)) = N ((28)); they represent the same 4D quantity N from (23) in S’ and S
frames. The principle of relativity is naturally satisfied and there is no paradox.

Instead of the torque N we can use N, and NV;. However, as already said, N
and N, are not uniquely determined by N, but their explicit values depend also
on v. This means that it is important to know which frame is chosen to be the
~Yo-frame. Observe that the same conclusions also refer to the determination of F,
B and My, M; from F and M, respectively. In this paper, we shall only consider
the case when S is the yo-frame. For other cases readers can consult Sec. 4.2 in
Ref. [2]. N5 and N; will be determined directly from (24) taking into account that
v = ¢y and ugQ = ygcyo + YoBgcy:. This yields that

Ny = Ny, = NPy3, Ny = Njm + Niyg = Ny + NP, (29)

where N2, N9 and N%2 are from (28). Thus when S is the yo-frame the “space-
space” torque Ny is different from zero.

The same N, and N; can be determined using (25) and (13). The charge @
moves in S, which yields that both E and the magnetic field B are different from
zero. Then E = Etvy,, E° = E® =0, E' = Dyg(z' — 8ga°), E* = Dyga?, and the
magnetic field is B = Bty,, B = B! = B> =0, B® = (D/c)ygBqx? = BoE?/c.
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The spatial components E? and B’ are the same as the usual expressions for the
components of E and B for an uniformly moving charge. Inserting these equations
into (25) we again find Ns; and N; as in (29). Ny is #0 since B is #0.

N, from (29) can be written in the form similar to (7) from Ref. [1], when the
above explicit forms of F and B are used. Thus

N, = NP3 = N"v3 = (BgctK7 + (q/c)Bqy(E u,))7s. (30)

In the usual approach, e.g., Ref. [1], it is considered that in the S frame the whole
physical torque is the 3D T, i.e., T%, given by (7) in Ref. [1]. We see that in the
4D spacetime, the physical torque, theoretically and experimentally, is either the
bivector N, (28) or (26), or two 1-vectors Ny and Ny given by (29) and (30). Only
when the laboratory frame S is the ~y-frame, the spatial components of Ny can be
put into the correspondence with the components of the 3D T. However note that
in (30) all components are the components of the 4D quantities, 1-vectors x, u, K,
E and B, while in (7) in Ref. [1] only the corresponding 3D vectors are involved.
Let us now determine N, and N; as CBGQs in S’. Relative to the S’ frame, the
charge @ is at rest ug = ¢y, but the “fiducial” observers are moving with velocity
v =79V, — YQPBgcyi- Then Ny and Ny in S’ can be obtained either directly from
(24) or by means of the LT (22) of Ny and N; from (29). We find Ny and N; as

N, = N,;“’Y;L = NQB’YZ/S? NIB = IYQﬂQN,()Qv

S

Ny = N9, NJ°=—BoyN"", N/Y? = qoN™L2 ) NB =, (31)

where N'%1, N'02 are given in (26). Now, N, is different from zero not only in S,
but in the S’ frame as well. The same results for Ny and N; in S’ can be obtained
using (25) and (13) and writing all AQs as CBGQs in the S’ frame.

It can be easily seen that Ny (IV;) from (29) is equal to N, (Ny) from (31); it is
the same 4D CBGQ for observers in S and S’; the principle of relativity is naturally
satisfied and there is no paradox.

Inserting Ns and N; from (29) and (31) into (21), which connects N with N,
and Ny, we find that the expressions for N in S and S’ are the same, as it must be.

If we would take that S is the vo-frame, as in Sec. 4.2 in Ref. [2], then the
explicit expressions for Ny and N; as CBGQs would be different than those given
in (29) and (31). For example, in that case N is zero, but N; # 0 both in S and S.
However, when these new expressions for Ny and N; as CBGQs are inserted into
(21), they will give the same N as when S is the 7p-frame.

6. Conclusions
It is proved in this paper, as in Ref. [2], that the physical torques are the 4D

geometric quantities, the bivector N defined in (18) and (23), or the 1-vectors Ny
and N; that are derived from N according to (21). They together contain the same
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physical information as the bivector V. In the considered case Ny and N, are defined

n (24). Only in the ~o-frame one can deal with components T; and T} ; of two 3D
torques T and Ty, respectively. In that frame, the temporal components of Ny and
N; as CBGQs are zero, N? = N? = 0, and the spatial components are T; = N!
and T;; = Nj. All components T; and T} ; are equally well physical for “fiducial”
observers. Hence, it is not true, as generally accepted, that only the 3D torque
T is a well-defined physical quantity. However, it is shown here, and in Ref. [2],
that even in the frame of “fiducial” observers, the relativistically correct geometric
quantities are not 3D vectors T and T, but the bivector N or 1-vectors Ny and V;.
These 4D geometric quantities correctly transform under the LT, e.g., the whole
torque Vs remains unchanged under the passive LT, Ny, = Ny, = Ng“’yL7 where
the components transform by means of the LT (22) and the basis 1-vectors v,
by the inverse LT. This means that the principle of relativity is satisfied and the
paradox with the torque does not appear. In contrast to it, the components T; and
T} ; transform according to the AT (4), which differ from the LT for components of
1-vectors, e.g., (22). Furthermore, the objections (i) and (ii) from Sec. 2 show that
the transformations of T and T}, as geometric quantities in the 3D space, are not
the LT but the relativistically incorrect AT.

The validity of the above relations with 4D geometric quantities can be ex-
perimentally checked measuring all six independent components of N, or N, and
N, taken together, in both relatively moving frames. Only such complete data are
physically relevant in the 4D spacetime. Remember that the usual 3D torque T
is connected only with three spatial components of Ny in the frame of “fiducial”
observers. These three components are not enough for the determination of the rel-
ativistically correct 4D torques N, or Ny and N;. This is the real cause of Jackson’s
paradox.
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JACKSONOV PARADOKS I NJEGOVO RJESENJE CETIRIDIMENZIJSKIM
GEOMETRIJSKIM VELICINAMA

Pokazuje se kako je stvarni uzrok Jacksonovog paradoksa primjena tridimenzijskih
(3D) veli¢ina, npr. E, B, F, L, T, njihovih transformacija i relacija. Princip rela-
tivnosti je prirodno ispunjen i ne javljaju se paradoksi ako se fizicka realnost pridjeli
4D geometrijskim veli¢inama, npr. 4D momentu sile N (bivektoru), ili, jednakoval-
jano, 4D momentima sile Ny i N; (1-vektorima), koji zajedno sadrze istu fizikalnu
informaciju kao i bivektor N.

222 FIZIKA A (Zagreb) 16 (2007) 4, 207-222



