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1. Introduction

The purpose of this paper is to develop the fractional Euler-Poincaré systems
on Lie algebras and their duals within the framework of fractionally differenti-
ated Lagrangian function (or fractional action-like variational approach). The frac-
tional mechanisms described through this work include some interesting features
concerning weak dissipative or nonconservative dynamical systems and turbulent
geophysical flows. The paper is organized as follows: after the Introduction, we re-
view briefly the classical variational approach which fails to describe correctly weak
dissipative and nonconservative dynamical systems; Sec. 3 is devoted to illustrate
the importance of fractional calculus and its successful role in describing noncon-
servative systems; in Sec. 4, we introduce the reader to the fractional action-like
variational approach concept where we review some of its important features and
characteristics in particular the violation of Noether’s symmetry theorems. The
fractional Euler-Poincaré equations on Lie endomorphism space and their duals,
which arise through a reduction of the fractional variational principle, are devel-
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oped in Sec. 5, and some consequences are treated including the Kelvin-Noether’s
theorem, illustrated by a simple ideal plasma fluid flow example. In the last section,
the fractional reduced Euler-Poincaré and fractional Hamel fractional equations on
Lie algebras are developed. Finally, some discussion and outlook are presented in
Sec. 7.

2. The classical variational approach

Historically, in the brachistochrone problem, the variational technique was used
to find the path of quickest descent for a bead sliding along a wire under the action of
gravity. The behavior of light and particles in a uniform medium (geodesics, geom-
etry, etc.) was also discussed by Fermat within the concept of Fermat’s principle of
least time. After that comes the Maupertuis-Jacobi’s principle of least action mak-
ing use of the length variable s as the orbit parameter to describe particle motion,
and finally the celebrated Hamilton’s principle from which equations of motion of
any dynamical systems are derived in terms of generalized spatial coordinates [1 – 4].
The Lagrangian method was introduced in as a powerful alternative tool to the well-
known Newtonian method for deriving equations of motion for complex mechanical
systems. After that, a complementary approach to the Lagrangian method, known
as the Hamiltonian method was introduced by Hamilton. In classical conservative
Hamiltonian systems, the evolution of a classical physical system is usually de-
scribed by a function q (τ) , where “q” is a generalized coordinate and “τ” is assumed
here to be the intrinsic time. The trajectory q (τ) is in fact determined by assuming
that the action functional S [q (τ)] =

∫

L (τ, q (τ) , q̇ (τ) , q̈ (τ) , ...) dτ, t1 ≤ τ ≤ t2
is extremized. t1 and t2 are two fixed moments of time such as q (t1) = q1 and
q (t2) = q2 and the function L is the Lagrangian of the dynamical systems. The
requirement that the function q (τ) extremizes the action for L (τ, q (τ) , q̇ (τ)) leads
to a differential equation for q (τ). If the function q (τ) is an extremum of the
action functional, than a small perturbation, say δq (τ) will change the value of
the action by terms which are quadratic in δq (τ). That is, the variation δS [q, δq]
should have no first-order terms in δq (τ). Thus with the boundary conditions
δq (t1; t2) = 0 (the variation δq is assumed to vanish at the integration boundaries)
we obtain the celebrated Euler-Lagrange equations ∂L/∂q−d/dτ (∂L/∂q̇) = 0. This
is the classical equation of motion for any dynamical system having the Lagrangian
L (τ, q (τ) , q̇ (τ)). In fact, the coordinates q are based on a certain configuration
manifold Q and the Lagrangian is then the function L : TQ → R defined on the tan-
gent bundle TQ of Q with canonical projection ΓQ : TQ → Q. Here TQ is the veloc-
ity space with bundle coordinates (q, q̇). The Hamiltonian formalism is based on the
Legendre transform of the Lagrangian L (τ, q (τ) , q̇ (τ)) with respect to the velocity
q̇ (τ). The time and position generalized coordinates do not participate in the Leg-
endre transformation and they are kept as parameters. The momentum is defined as
p = ∂L/∂q̇, that is q̇ = v (p; q, τ) (v is the velocity), and the Hamiltonian function
is defined by the following function H (p, q, τ) =

∑

pv (p; q, τ)− L (q, v (p; q, τ) , τ).
The resulting Hamilton equations of motion are ṗ = −∂H/∂q and q̇ = ∂H/∂p.
An important consequence of classical conservative dynamical systems is Noether’s
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theorem which states that for any symmetry of the Lagrangian, there corresponds
a conservation law (and vice versa). In other words, when a system exhibits sym-
metry, then a constant of motion can be obtained. One of the most important
consequences and well-known illustrations of this deep and important relation, is
given by the conservation of energy in mechanics: the autonomous Lagrangian
L (τ, q (τ) , q̇ (τ)), correspondent to a mechanical system of conservative points,
is invariant under time-translations (time-homogeneity symmetry), and as a re-
sult L(τ, q(τ), q̇(τ)) − q̇∂L(τ, q(τ), q̇(τ))/∂q̇ ≡ constant follows directly from the
Noether’s theorem. This is to say that the total energy of a conservative system
always remains constant in time. In other words, it cannot be created or destroyed,
but only transferred from one form into another. That is, when the Lagrangian
is invariant under a time translation, a space translation, or a spatial rotation,
the conservation law involves energy, linear momentum, or angular momentum,
respectively. One can mathematically prove that the Noether’s conservation laws
are still working if, for example, an extra desired term involving the nonconserva-
tive forces is added to the standard constants of motion. The last equation is in
fact valid along all Euler-Lagrange extremals q of an autonomous problem of the
calculus of variations. The constant of motion is known in the standard calculus of
variations as the second Erdmann necessary condition. It gains different interpre-
tations in concrete applications: conservation of energy in classical and quantum
mechanics, income-wealth law in economics, first law of thermodynamics and cos-
mology, etc. Nonconservative forces remove energy from the dynamical systems
and, consequently, the constant of motion is broken. Unfortunately, for decaying,
weak dissipative or nonconservatives dynamical systems, the above standard re-
quirements and equations do not hold and didn’t succeed to describe correctly the
decaying behaviour. Other approaches are required.

3. Importance of the fractional calculus

Fractional calculus plays an important and leading role in the understanding
of complex classical and quantum (conservative and nonconservative) dynamical
systems with holonomic as well as with nonholonomic constraints [5 – 48]. Its ori-
gin goes back more than three centuries, when in 1695 L’Hospital asked Leibniz
the mathematical meaning of (

√

d/dy)x. After that, many famous mathemati-
cians (J. Fourier, N. H. Abel, J. Liouville, B. Riemann, etc.) contributed strongly
to the fractional analysis program, e.g. fractional derivatives and integrals. Al-
though the fractional theory is very rich, it was considered for more than three
centuries as a theoretical mathematical field with no physical interests. In the last
few decades, fractional theory was proved to be very useful and important in var-
ious fields of science including classical and quantum physics, field theory, solid
state physics, fluid dynamics, turbulence, chemistry in general, nonlinear biology,
stochastic analysis, nonlinear control theory, image processing, etc. While various
fields of application of fractional derivatives and integrals are already well devel-
oped, some others have just started, in particular the study of fractional problems
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of the calculus of variations (COV) and respective Euler-Lagrange type equations
are a subject of current strong research and investigations. In 1996 – 97, F. Riewe
used the COV with fractional derivatives and consequently obtained a version of
the Euler-Lagrange equations (ELE) with fractional derivatives that combines the
conservative and non-conservative cases [36]. In 2001 – 2002, another approach was
developed by M. Klimek by considering fractional problems of the COV, but with
symmetric fractional derivatives, and corresponding ELE’s were obtained using
both Lagrangian and Hamiltonian formalisms [38]. In 2002, O. Agrawal extended
Klimek problem and proved a formulation for variational problems with right and
left fractional derivatives in the Riemann-Liouville sense [39]. In 2004 the ELE’s
of Agrawal were used by D. Baleanu and T. Avkar to investigate problems with
Lagrangians which are linear on the velocities [32]. In all above mentioned studies,
ELE’s depend on left and right fractional derivatives, even when the problem de-
pend only on one type of them. In 2005, M. Klimek studied problems depending
on symmetric derivatives for which ELE’s include only the derivatives that appear
in the formulation of the problem [33]. Fractional derivatives are used in all these
approaches and, consequently, complicated mathematically the description of any
dissipative or weak decaying dynamical systems. Remember that dissipative forces
can be modelised in many different varieties of ways. Methodologically, dissipative
Newtonian systems are nothing than complement to conservative systems, since not
only energy, but also other physical quantities, such as linear and angular momen-
tum, are not conserved. If, for instance, one considers an unconstrained Newtonian
system with self-adjoint forces, then the Lagrangian exists if the fundamental ana-
lytic theorem for configurations space formulations is verified. A Lagrangian for its
direct representation does not exist if the system is represented more realistically
by adding, for example, a drag force linear in the velocity. In this way, the system
tends to a non-self-adjoint situation. The problem of the existence of a typical La-
grangian depends in fact of whether it is self-adjoint or not and one refers to the
transformation theory or the Lie algebra structure to study the required problem.

4. Fractional action-like variational approach (FALVA)

In a recent work, we developed a novel approach known as the fractional action-
like variational approach (FALVA) or fractionally differentiated Lagrangian func-
tion (FDLF) to model and describe nonconservative Lagrangian dynamical systems
within the framework of fractional differential calculus [49 – 59]. In our proposed
method, fractional time integral introduces only one parameter “α” while in other
models an arbitrary number of fractional parameters (orders of derivatives) ap-
pears. The FALVA is based on the following concept:

Definition 1. Consider a smooth manifold M (configuration space) and let
L : R × TM → R be the smooth Lagrangian function (smooth map). For any
piecewise smooth path q : [t0, t1] → M , we define the fractional action or fraction-
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ally differentiated Lagrangian function (FDLF) by

SL [q]=
1

Γ(α)

t
∫

t0

L(q̇(τ), q(τ), τ)(t−τ)α−1dτ =

t
∫

t0=0

L(q̇(τ), q(τ), τ)dgt(τ) , (1)

where L(q̇, q, τ) is the Lagrangian weighted with (t−τ)α−1/Γα and Γ(1+α)gt(τ) =
tα − (t − τ)α with the scaling properties gµt(µτ) = µαgt(τ), µ > 0. In reality, we
consider a smooth action integral (a time smeared measure dgt(τ) on the time in-
terval [0, t] ∈ R+) which can be rewritten as the strictly singular Riemann-Liouville
type fractional derivative Lagrangian

Sβ∈(0,1)[q] = D−1+β
t L(q̇(t), q(t), t)

=

t
∫

0

L (q̇ (t) , q (t) , t)
dτ

(t − τ)
β

β→0
→

t
∫

0

L (q̇ (t) , q (t) , t) dτ ,

and thereby retrieve the standard action integral or functional integral. In this work,
we have β = 1 − α, α ∈ (0, 1). Such type of functionals is known in mathematical
economy, describing, for instance, so called “discounting” economical dynamics.
The true fractional derivatives are also often, nowadays, used for describing so
called “dissipative structures” appearing in nonlinear dynamical systems, etc.

Theorem 1. Let L : R × TM → R be a Lagrangian and x = x(τ, ξ) be the
coordinate point of the generalized q(τ, ξ). Set L = L(x, y) evaluated at y = dx/dτ =
ẋ, where dot denotes time derivative with respect to τ , x = (xi) is a coordinate
system on M and yi = dxi are functions on tangent vectors. Then the initial
curves x = x(τ) satisfy the fractional Euler-Lagrange equations (FEL)

Ei(L) ≡
∂L

∂xi
−

d

dτ

(

∂L

∂yi

)

=
1 − α

t − τ

∂L

∂yi
≡

∂R

∂yi
≡ Fyi,α , (2)

where R(yi) ≡ (1−α)L(yi)/(t−τ) is identified as the Rayleigh dissipation function.

In fact, given M and L, there is a unique function EL : TM → R and a unique
1 − form αL on TM , such that in local coordinates, (qi, q̇i), we have E(L) =
∑

i q̇i∂L/∂q̇i − L and α = (∂L/∂q̇i)dqi. More generally, let L(qi, pj
k) be a function

on C∞ defined on RN × RNp. What we are looking for is the extremum of the
FDLF on a certain domain function D with boundary ∂D [4]

Aα(Λ) =

t
∫

t0=0

L(Λi(u(τ)),Λj
uk(u(τ)))dgu1(τ) ∧ ... ∧ dgup(τ) , (3)

where Λj
uk ≡ ∂Λj/∂uk and Λ ∈ C∞ : Rp → RN with generally dgt(τ) = (t −

τ)α−1dτ/Γ(α). Consider now the elementary variations Λs = Λ + εξ̂ of Λ where
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ξ̂ : D → R3 vanishes at the boundary ∂D with ε ≪ 1. The fractional directional
derivative of Aα may be written as

DAα(Λ) · ξ =

t
∫

t0=0

(

∂L

∂qi
ξi +

∂L

∂pj
k

ξj
uk

)

dgu1(τ) ∧ ... ∧ dgup(τ) . (4)

Making use of the fractional Stokes formula
∫

D

∂ω =
∫

∂D

ω with

ω =

p
∑

k=

(−1)k+1

(

∂L

∂Λj
uk

)

dgu1(τ) ∧ ... ∧ dgup(τ) , (5)

one finds easily

DAα(Λ) · ξ=
1

Γ(α)

t
∫

t0=0

{(

∂L

∂qi
−

∂

∂uk

(

∂L

∂pi
k

)

−
1 − α

t − τ

∂L

∂pi
k

)}

ξ̂idu1(τ) ∧ ... ∧ dup(τ)

(6)
The critical points are then solutions of the fractional Euler-Lagrange equations
(2) with 1 ≤ i ≤ N .

Lemma 1. If
(

qi, q̇i
)

are holonomic local coordinates on TM such that γ(τ) =
(

qi (τ)
)

and γ̇ (τ) =
(

q̇i (τ)
)

, then γ is a solution of the fractional systems of
nonlinear ordinary differential equations in one of the following forms:

∂L

∂qk

(

q̇j ; qj , τ
)

−
d

dτ

(

∂L

∂q̇k

)

(

q̇j ; qj , τ
)

=
1 − α

t − τ

∂L

∂q̇k

(

q̇j ; qj , τ
)

, (7)

∂2L

∂q̇k∂q̇l
q̈ l
(

q̇j ; qj , τ
)

+
∂2L

∂q̇k∂ql
q̇l
(

q̇j ; qj , τ
)

−
∂L

∂qk

(

q̇j ; qj , τ
)

+
α − 1

τ − t

∂L

∂q̇k

(

q̇j ; qj , τ
)

= 0 ,

(8)
where k = 1, ..., n = dim M . Dot denotes time derivative with respect to τ .

Definition 2: A path q : [t0, t1] → M satisfying Eq. (2) is said to be a fractional
extremal of the Lagrangian L.

Definition 3: The fractionally differentiated Lagrangian function (1) is said to
be quasi-invariant under the infinitesimal ε̃-parameter transformations [59] :

τ̄ = τ + ε̃κ(τ, q) + O
(

ε̃2
)

, (9)

q̄(τ̄) = q(τ) + ε̃ω(τ, q) + O
(

ε̃2
)

, (10)

up to a gauge term Λ if, and only if

L
(

τ̄ , q̄k(τ̄), q̄′k(τ̄)
)

(t − τ̄)α−1 dτ̄

dτ
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= L
(

τ, qk(τ), q̇k(τ)
)

(t − τ)α−1 + ε̃(t − τ)α−1 dΛ

dτ

(

τ, qk(τ), q̇k(τ)
)

+ O
(

ε̃2
)

.

Theorem 2: If the FDLF represented by equation (1) is invariant up to a gauge
term Λ, and if

L
(

τ, qk(τ), q̇k(τ)
)

= −
(

∂L
(

τ, qk(τ), q̇k(τ)
)

/q̇
)

· (ω − q̇κ) ,

then
∂L
(

τ, qk(τ), q̇k(τ)
)

∂q̇k
· ω
(

τ, qk
)

+

[

L
(

τ, qk(τ), q̇k(τ)
)

−
∂L
(

τ, qk(τ), q̇k(τ)
)

∂q̇k
· q̇k

]

κ
(

τ, qk
)

− Λ
(

τ, qk(τ), q̇k(τ)
)

is a constant of motion.

In fact, the conservation of momentum, when the Lagrangian is not a function
of the generalized coordinates qk, or conservation of energy when the Lagrangian
has no explicit dependence on time τ , are no more true for a fractional order of
integration α /= 1. When the Lagrangian is not a function of qk, the constant of
motion takes the form

∂L
(

τ, qk(τ), q̇k(τ)
)

∂q̇k
+ (1 − α)

∫

∂L
(

τ, qk(τ), q̇k(τ)
)

∂q̇k

1

t − τ
dτ .

For α = 1, ∂L
(

τ, qk(τ), q̇k(τ)
)

/∂q̇k is constant and L is conserved.

Theorem 3: Let γ(τ) be an extremal of a time-independent Lagrangian
L = L

(

τ, qk(τ), q̇k(τ)
)

. Then, if the Hamiltonian H
(

τ, qk(τ), q̇k(τ)
)

= pk q̇k −

L
(

τ, qk(τ), q̇k(τ)
)

of the system does not have any explicit dependence on time,

and if we drop terms higher than q̇k, then the Hamiltonian is not conserved
(H : T ∗M → R).

Proof: Let T ≡ t − τ be a time-change of the variable. Using the facts

∂L
(

τ, qk(τ), q̇k(τ)
)

/∂τ = 0

and

dL
(

τ, qk(τ), q̇k(τ)
)

dτ
=

∂L
(

τ, qk(τ), q̇k(τ)
)

∂τ
+
∑

k
q̇k

(

∂L
(

τ, qk(τ), q̇k(τ)
)

∂qk

)

,

we obtain:

dH
(

τ, qk(τ), q̇k(τ)
)

dT
≡

d

dT

{

∑

k

q̇k ∂L
(

τ, qk(τ), q̇k(τ)
)

∂q̇k
− L

(

τ, qk(τ), q̇k(τ)
)

}
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=
∑

k

q̇k

(

1 − α

T

)

∂L
(

τ, qk (τ) , q̇k (τ)
)

∂q̇k
=

1 − α

T

∑

k

pkq̇k . �

When α = 1, the energy is conserved.

Corollary 1: The equations of motion are reduced to the pair of fractional
canonical Hamilton’s equations:

ṗk = −
∂H

∂qk
−

1 − α

t − τ
pk , (11)

q̇k =
∂H

∂pk
. (12)

Definition 4: The fractional Newton’s second law is defined as

mq̈k = −
∂U

∂qk
+ A(T )mq̇k , (13)

where for simplicity A(T ) ≡ (1 − α)/T , and U represents the classical potential.

Eq. (13) can be written also in the following form

q̈ k +
α − 1

T
q̇k ≡

1

Tα−1

d

dT

(

Tα−1q̇k
)

= −
1

m

∂U

∂qk
. (14)

In other words, consider the Lagrangian L = 1/2 |q̇|
2
−U(q), U(q) being the poten-

tial energy. The fractional ENEL equations become m (q̈ + ((α − 1)/(τ − t)) q̇) =
−∇U(q) which are the modified Newton’s equation of motion of a particle of mass
m in the force field −∇U generated by the potential U .

Corollary 2: For a Hamiltonian system with H = H
(

pk, qk
)

on a typical
2n-dimensional symplectic manifold (M,Ξ) with the symplectic structure Ξ, the
trajectory is determined by the fractional action principle provided that Eqs. (11)
and (12) are satisfied. For arbitrary curves on M , the “α –Euler-Lagrange 1 −
form”

E =

(

q̇k −
∂H

∂pk

)

dpk −

(

ṗk +
∂H

∂qk
+

1 − α

t − τ
pk

)

dqk = q̇idpi − ˙̂pi − dH , (15)

with

˙̂p1 = ṗi +
1 − α

t − τ
pi ≡ ṗi +

α − 1

T
pi =

1

Tα−1

d

dT

(

Tα−1pi

)

, (16)

can then be defined along a curve, and E = 0 gives rise the canonical Eqs. (11) and
(12).
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Theorem 4: Let L be a Lagrangian on TM and X a vector field on M . If the
Lagrangian L is X-invariant, then the quantity PX = Xkpk is not conserved along
the extremals of L.

Proof : Let γ = γ
(

qk(τ)
)

be an extremal of the Lagrangian L. Then

d

dτ
PX(γ, γ̇) =

d

dτ

(

Xk (γ(τ))
∂L
(

τ, qk(τ), q̇k(τ)
)

∂q̇k

)

=
∂Xk

∂qk
q̇k∂L

(

τ, qk(τ), q̇k(τ)
)

∂q̇k
+Xk

(

∂L
(

τ, qk(τ), q̇k(τ)
)

∂qk
−

α−1

τ−t

∂L
(

τ, qk(τ), q̇k(τ)
)

∂q̇k

)

=
1 − α

τ − t
Xk ∂L

(

τ, qk(τ), q̇k(τ)
)

∂q̇k
,

assuming X-invariant, e.g.

∂Xk

∂qk
q̇k ∂L

(

τ, qk(τ), q̇k(τ)
)

∂q̇k
+ Xk ∂L

(

τ, qk(τ), q̇k(τ)
)

∂qk
= 0 . �

Corollary 3: Let L = L
(

τ, qk(τ), q̇k(τ)
)

be a Lagrangian on the set Rn. If

∂L
(

τ, qk(τ), q̇k(τ)
)

/∂qk = 0, then dpk/dτ /= 0 along any fractional extremal.

5. The fractional Euler-Poincaré on Lie endomorphism
space and their dual

Let GLie be a Lie group (a smooth manifold G), g its Lie algebra and g∗Lie its
dual. The corresponding smooth group structure is described by the map

G × G → G , G → G ,
(g, h) → gh , g → g−1 .

We summarize the fractional formalism with the following theorem [60 – 62].

Theorem 5: The following conditions are equivalent:

A-The Fractional Hamilton’s Principle:
Any curve r(τ) ∈ GLie is a critical point of the fractional action

1S0<α<1[q] = 1
Γ(α)

t
∫

t0=0

L (ṙ(τ), r(τ), τ) (t − tau)α−1dτ ,

for variations δr (τ) such that δr (τ0) = δr (τ1) = 0.
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B-The Fractional Euler-Poincaré variational principle:
Any curve r(τ) ∈ GLie is a critical point of the fractional action

2S0<α<1[q] = 1
Γ(α)

t1
∫

t0=0

l(v(τ), τ)(t − τ)α−1dτ ,

for variations δr(τ) such that δr(τ0) = δr(τ1) = 0.

C-The Factional Hamilton’s phase space principle:
The curve (r(τ), p(τ)) ∈ T ∗G is a critical point of the fractional action

3S0<α<1[q] = 1
Γ(α)

t1
∫

t0=0

(p · ṙ − H(r, p)) (t − τ)α−1dτ ,

for variations (δr, δp) such that δr (τi) = 0, i = 0, 1 and δp(τ) is
arbitrary. The pointwise function is defined on TGLie ⊕ T ∗GLie

regarded as a bundle over GLie, that is, the base space common
to TGLie and T ∗GLie.

D-The Fractional Lie-Poisson Variational Principle:
The curve (v(τ), ς(τ)) ∈ gLie × g∗Lie is a critical point of the fractional
action

4S0<α<1[q] = 1
Γ(α)

t1
∫

t0=0

(〈ς(τ), v(τ)〉 − h (ς(τ))) (t − τ)α−1dτ ,

for variations δv(τ) = κ̇t(τ)+ [v(τ), κ(τ)] such that κ (τi) = 0, i = 0, 1
and δp(τ) are arbitrary.
The bracket is the familiar Poisson one and for any Hamiltonian

h : g∗Lie → R 〈δh/δµ, ν〉 = dh(µ) · ν,
where dh(µ) : g∗Lie → R is the usual derivative of h, and 〈 , 〉 denotes
the pairing between gLie and g∗Lie.

E-The Fractional Euler-Lagrange Equations on GLie :
∂L

∂r
−

d

dτ

(

∂L

∂ṙ

)

=
1 − α

t − τ

∂L

∂ṙ

F-The Fractional Euler-Poincaré Equations on g∗Lie :
d

dτ

(

∂L

∂v

)

+
α − 1

τ − t

∂L

∂v
= ad∗

v

∂L

∂v
,

where v(τ) = r−1(τ)ṙ(τ). Here for a given ξ, the adjoint action of GLie

on gLie is defined by

adg (ξ) =
d

dτ

∣

∣

∣

∣

τ=0

g exp (ξτ) g−1,

so that
adg : gLie → Endomorphism (g)

is an invertible linear map and defines a left group action on gLie. This
holds also for the dual g∗Lie.
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G-The Fractional Hamilton’s Equations on T ∗GLie:
(

dr(τ)

dτ
,
dp(τ)

dτ

)

=

(

∂H

∂p
, −

∂H

∂r
−

1 − α

t − τ
p

)

H-The Fractional Lie-Poisson on g∗Lie:

µ̇ +
α − 1

τ − t
µ = adδh/δµ∗µ

In fact, for ξ ∈ gLie, the fractional Euler-Poincaré equations on g∗Liewith basis
e1, ..., ep(dim gLie = r) may be written as

d

dτ

(

∂L

∂ξ

)

= ad∗

ξ

∂L

∂ξ
+ f , (17)

where f ≡ ((1 − α)/(τ − t)) ∂L/∂ξ. In the finite-dimensional case, Eq. (17) reads

d

dτ

(

∂L

∂ξd

)

= Cb
ad

∂L

∂ξb
ξa + fd , (18)

where Cb
ad are the dual constants of the Lie algebra defined by [ea, eb] = Cd

abed,
a, b = 1, ..., p and a sum over d is understood. For example, for a Lie algebra R3

with the corresponding rotational group and L : R3 → R, Eqs. (18) generalize the
fractional Euler-equations for rigid body with quadratic Lagrangians or the usual
Euler-equations with decaying external forces. In fact, the fractional equations
describing the Euler rigid body are equivalent to the rigid body fractional action-
like principle (1). Let V be the vector space and assume that gLie acts on the left
by linear maps on V and on its dual space V ∗. Define the linear map ρv = g → V
defined by ρv (ξ) = ξv and its dual ρ∗v = g∗ → V ∗ [63, 64]. For any a ∈ V ∗,
making use for convenience of the celebrated bilinear notational operation ρ∗va =
v♦a ∈ g∗Lie, the positive and negative fractional Lie-Poisson on g∗Lie may be written,
respectively as [65, 66]

µ̇ +
α − 1

τ − t
µ = ∓adδh/δµ♦a , (19)

ȧ = ±
δh

δµ
a . (20)

The fractional Euler-Poincaré equations hold also on gLie × V ∗

d

dτ

(

∂L

∂ξ

)

= ad∗

ξ

∂L

∂ξ
+

δL

δa
♦a + f , (21)

with ȧ = −ξ(τ)a. In a continuum medium, Eq. (21) is written as

∂

∂τ

(

δL

δ~u

)

= ad∗

~u

δL

δ~u
+

δL

δa
♦a + f = −£~u

δL

δ~u
+

δL

δa
♦a + f~u , (22)
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where £~u denotes the Lie derivative with respect to the Eulerian velocity field
~u(x, τ) and f~u = f ≡ ((1 − α)/(τ − t)) δL/∂~u. Equations (17) – (22) may describe
weak dissipative plasma fluid dynamics. One interesting consequence of the above
arguments is the violation of the Kelvin-Noether theorem (conservation of circula-
tion). It is worth mentioning that in continuum theories, the Kelvin circulation the-
orem for ideal current flow is related to the Noether theorem applied to continuum
medium using the particle relabelling group of symmetry [62, 63, 67 – 76]. In fact,
the Kelvin-Noether theorem has many important consequences in geophysical fluid
dynamics and turbulent fluids with dissipation produced by vortex line-stretching.
However, existing proofs of Kelvin-Noether conservation theorem are valid only for
ideal (smooth and laminar) fluids. In fact, recent numerical simulations done for
high-Reynolds-number turbulence show that the classical Kelvin-Noether theorem
is violated [77]. Define the Kelvin-Noether quantity I : C × g × V ∗ → R by [60]

I (c, ξ, a) =

〈

K(c, a),
∂L

∂ξ
(ξ, a)

〉

. (23)

C is a manifold on which the Lie group G acts on the right, K : C × V ∗ → g∗∗ is
an equivariant map and g∗∗ is the double dual Lie algebra.

Corollary 4: If ξ(τ), a(τ) satisfy the fractional Euler-Poincaré equations, then
the Kelvin quantity I(τ) = I (c(τ), ξ(τ), a(τ)) with I : C × g → R is not conserved.
Here c(τ) = c0g(τ)−1, c0 ∈ C and ġ(τ) = ξ(τ)g(τ). Conservation occurs for α = 1
(standard case) or when τ → ∞.

Theorem 6: If the Eulerian velocity field ~u(x, τ) satisfies the fractional Euler-

Poincaré equations
∂

∂τ

(

δL

δ~u

)

= −£~u
δL

δ~u
+

δL

δa
♦a+f~u , and the fractional continuity

equation
∂a

∂τ
+ £~ua = 0 ,

then
d

dτ
(I(τ) ≡ I (ℑτ , ~uτ , aτ )) =

∮

ℑτ

1

ρ

(

δL

δa
♦a + f~u

)

,

where ℑτ = ℵτ ◦ ℑ0, ℵτ is the flow of ~u(x, τ) and ρ is the mass density.

Proof: Following [64], we write the circulation and we perform variable change
as

I (ℑτ , ~uτ , aτ ) =

∮

ℑτ

1

ρτ

δL

δ~u
=

∮

ℑ0

1

ρ0
ℵ∗

τ

δL

δ~u

Then making use of the definition of the Lie derivative

(

d

dτ

)

Lie

(ℵ∗
τζτ ) = ℵ∗

τ

(

∂

∂τ
ζτ + £~uζτ

)

,
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we easily find using the fractional Euler-Poincaré equations and the change of
variables

d

dτ
I (ℑτ , ~uτ , aτ ) =

d

dτ

∮

ℑ0

1

ρ0
ℵ∗

τ

δL

δ~u
=

∮

ℑ0

1

ρ0

d

dτ

(

ℵ∗
τ

δL

δ~u

)

=

∮

ℑ0

1

ρ0

d

dτ

(

∂

∂τ

δL

δ~u
+ £~u

δL

δ~u

)

=

∮

ℑτ

1

ρ

(

δL

δa
♦a + f~u

)

. �

The circulation is not conserved as it is expected. One may even prove that the
potential vorticity on fluid parcels is violated. The above fractional formalism and
its nonconservation counterparts may be useful to describe dissipative phenomena,
like those occurring in flows in porous media and variable density multi-species
flows [66, 74, 76, 78]. An important simple implication concerns the ideal plasma
fluid with pressure p. Given the reduced Lagrangian l(u) = (1/2)

∫

B

∥

∥u2
∥

∥dµ with

gLie = diffeomorphismevol(B), B being the Riemann manifold. In the presence of
a force term F , Eq. (17) is equivalent to [66]

∂u

∂τ
+ u · ∇u = f + F −∇p . (24)

Multiplying this equation by the fluid density, the resulting differential equation
will express the violation of the conservation of momentum in a fluid flow. For a
fluid at rest (u = 0), the balance equation between the volume and pressure forces,
describing the stress condition in fluid at rest, is no longer valid, i.e. f decreases
with time. One may state the problem differently: the force F may be written as

F = F0 +
1 − α

τ − t
p , (25)

where p is the momentum and F0 is the value of F when α = 1, i.e. F → F0

for α = 1 (standard action) or when τ → ∞. The second term on the RHS of
Eq. (25) may be viewed as a perturbed force term in the theory. The above fractional
formalism could be useful to explain the breakdown of magnetic flux conservation
for ideal magnetohydrodynamics (MHD) plasmas and energy dissipation anomaly
in hydrodynamic turbulence [79]. Other applications may be discussed in fluid and
plasma dynamics. We leave this for a future work.

6. The Fractional reduced Euler-Poincaré and Hamel
equations on Lie algebras

One can describe the above concepts of fractional Hamiltonian’s mechanics in
the context of Lie algebras and their duals, that is by writing the equations di-
rectly on the Lie algebra, by passing the Lie-Poisson equations on the dual. The
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derivations will be based on the reduction of fractional variational principles. Let
L : TSO(3) → R be the Lagrangian of a rigid body motion written entirely in
terms of the body angular velocity Ω. We assume that the curve γ(τ) ∈ SO(3)

satisfies the ENEL equations. If we denote by Ms = γ
=

I Ω the spatial angular

momentum, where
=

I is the symmetric moment of inertia tensor, then ENLE yields
a non-conservation of Ms, e.g. dMs/dτ /=0 [60 – 64].

Theorem 7. The Euler’s equation
=

I Ω̇ =
=

I Ω × Ω is equivalent to conservation
of the spatial angular momentum unless α = 1. Otherwise, the equivalence does not
hold.

Theorem 8: If the curve γ(τ) ∈ SO(3) satisfies the FEL with

L (γ, γ̇) =
1

2

∫

B

ρ (X) ‖γ̇X‖
2
d3X , (26)

if and only if Ω(τ) defined by γ−1γ̇u = Ω × u, ∀ u ∈ R3 satisfies the fractional

Euler’s equation
=

I d
˙̂
Ω/dτ =

=

I Ω × Ω, where
˙̂
Ω = T 1−αd/dT (Tα−1Ω). ρ(X) is a

given mass density and B ⊂ R3 is a reference configuration.

Proof: This is evident due to the fact that Noether’s theorem for the spatial

angular momentum is not conserved and from this one derives
=

I d
˙̂
Ω/dτ =

=

I Ω ×
Ω �.

Theorem 9: Let G be a Lie group, g = TeG its corresponding Lie algebra,
L : TG → Ra left invariant Lagrangian, l : g → R be its restriction to the identity,
γ(τ) ∈ G and ξ(τ) = γ(τ)−1 · γ̇(τ). Then, if γ(τ) satisfies the FEL, the correspond-
ing Euler-Poincaré equations do not hold

ad∗

ξ

∂L

∂ξ
/=

d

dτ

(

∂L

∂ξ

)

. (27)

where adξ : g → g = adξA = [ξ,A] ; [, ] : g × g → g is the associated Lie bracket,
and adξ∗ is its dual.

Corollary 5: The fractional variational principle for l (ξ(τ)) holds on g and on
the tangent bundle of any configuration manifold Q, using δξ = η̇+((α − 1)/T ) η+
[ξ, η], where η vanishes at the endpoints.

Corollary 6: The spatial angular momentum is not conserved. We have

dM̄s/dT ∝ T 1−α, M̄s = Ad∗

g−1∂l/∂ξ.

This is an anomalous spatial angular momentum and it does have the property that,
if M̄s does not depend on qi, it is not a constant of motion. Since the FEL and
fractional Hamilton’s equations are equivalent on the tangent bundle configuration
space, then the fractional Lie-Poisson and fractional Euler-Poincaré equations are
also equivalent on TQ and T ∗Q. In reality, the standard Lie-Poisson and Euler-
Poincaré equations (α = 1), as well as their combination, occur for many interest-
ing conservative physical systems and had revealed interesting features from the
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Lagrangian point of view. The basic idea is to drop Euler-Lagrange equations and
variational principles from a general velocity phase space TQ to the quotient TQ/G
by a Lie group action of G on Q. If the Lagrangian is a G-invariant Lagrangian
on the tangent bundle TQ, it induces a particular reduced Lagrangian on TQ/G
by implementing a specific connection on the principal bundle Q → S = Q/G,
assuming that this quotient is nonsingular, allowing one to split the variables into
a horizontal and vertical part. Note that this formalism holds only for conserva-
tive systems and it fails for dissipative or nonconservative dynamical systems. Let
(

xβ , ηa
)

be internal coordinates for the shape space Q/G and for the Lie algebra
g relative to a chosen basis, respectively, l = l (xα, ẋα, ηa) the Lagrangian and Ca

db
the structure constants of the Lie algebra.

Definition 5: The resulting fractional Hamel equations are

∂l

∂xβ
−

d

dτ

(

∂l

∂ẋβ

)

=
1 − α

t − τ

∂l

∂ẋβ
, (28)

∂l

∂ηa
Ca

dbη
d −

d

dτ

(

∂l

∂ηb

)

=
1 − α

t − τ

∂l

∂ηb
, (29)

and the fractional reduced FEL equations are

d

dτ

(

∂l

∂ẋβ

)

−
∂l

∂xβ
≡

∂l

∂ξa

(

Ba
βδẋ

δ + Ba
βdξ

d
)

=
α − 1

t − τ

∂l

∂ẋβ
, (30)

d

dτ

(

∂l

∂ξb

)

≡
∂l

∂ξa

(

Ba
βbẋ

β + Ca
dbξ

d
)

=
α − 1

t − τ

∂l

∂ξb
, (31)

which are equivalent respectively to:

1

Tα−1

d

dT

(

Tα−1 ∂l

∂ẋβ

)

−
∂l

∂xβ
≡

∂l

∂ξa

(

Ba
βδẋ

δ + Ba
βdξ

d
)

, (32)

1

Tα−1

d

dT

(

Tα−1 ∂l

∂ξb

)

≡
∂l

∂ξa

(

Ba
βbẋ

β + Ca
dbξ

d
)

, (33)

where ξa = Aa
β ẋβ + ηa is the velocity shift, Ad

β are the local coordinates of the

connection A and Ba
βd = Ca

bdA
b
β = −Ba

dβ are the coordinates of the curvature B of
A.

In this way, the reduction of a cotangent bundle T ∗Q by a symmetry group G
is also a bundle over T ∗S : S = Q/G unless Eqs. (30) – (33) are satisfied, i.e. the
FDLF holds for any weak dissipative systems. The applications described here are
simple but serve as a staring point.
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7. Conclusions and perspectives

The nonconservative equations constructed through this work have the essential
feature that both energy and angular momentum conservation laws are violated.
In the context of Euler-Poincaré, this means that the energy is decreasing along
the coadjoints non-invariant orbits. For example, in plasma physics and stellar dy-
namics, we enlarged our arguments by stating that dissipative mechanism occurs
with simultaneous violation of particle number and energy [79 – 82]. In geophysical
scenarios, both energy and entropy are violated [81]. We expect important impli-
cations of our formalism to a number of known examples, including the heavy top
[67 – 73], compressible and incompressible fluids, inviscid, irrotational, unsteady
flows, plasma MHD, superfluid turbulence [74 – 79], as well as gauge quantization
[83 – 86] and astrophysical turbulent flows [87], topological charge of vortices in
quantum mechanics [88], damping mechanism in planetary physics [89], Landau-
Lifschitz equations for ferromagnetism [90, 91]. The results obtained in this work
need more details and further consequences are under progress.
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GEOMETRIJA MNOGOSTRUKOSTI U LIEVOM ENDOMORFSKOM
PROSTORU I NJIHOVI PAROVI U FRAKCIJSKOM AKTIVNOM

VARIJACIJSKOM PRISTUPU

Raspravljaju se neke zanimljive odlike geometrije mnogostrukosti u Lievom endo-
morfskom prostoru u frakcijskom aktivnom varijacijskom pristupu (frakcijski dife-
renciranoj Lagrangeovoj funkciji) kako je to autor nedavno objavio.
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