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The calculation of a partial cross section in atomic collision theory when the col-
lision is inelastic and there is not a possibility of particle exchange requires the
solution of a system of coupled differential equations. The Numerov technique is
applied to the solution of schematic model equations, which simulate the solution
of real problems but are themselves exactly solvable. We have investigated the 32S
transition in sodium as an excellent application of a near resonance and strong cou-
pling situation in the case of two-state approximation. The results are compared
with those obtained by the Bethe and resonance distortion approximations. The
difference can be ascribed to the use of the set of two-channel differential equations
rather than the set of three-channel equations used in other approximations, and
to the simplified treatment of the interaction potentials.
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1. Introduction

The study of particle collisions has a long and storied history in the annals
of scientific exploration. Much of the understanding of the fundamental nature
of particles and their underlying microscopic interaction has been derived from
scattering experiments. Scattering plays an essential role in elastic and inelastic
collisions, reactions, and rearrangements, as well as in the capture of elementary
particles, nuclei, atoms, molecules, and quasi-particles.

Theoretical predictions of scattering cross sections and resonance are usually
based on an underlying differential equation such as the Schrödinger equation,
which can be split into a system of coupled differential equations. One of the
tasks of scattering theory is to establish the mathematical tools necessary for the
extraction of analytic or numerical results to show their efficacy.
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Alkali-metal atoms are fertile ground for the study because they are ideally
suited for the production of atomic beams, can be easily detected, and have large
electron collision cross sections. The very strong coupling between the ground n2S
and the n2P excited states in many cases simplifies the theoretical treatment of
the collision problem. All these properties make them “targets of opportunity” for
electron-atom collision research, both experimental and theoretical.

From the point of view of practice, we know that the D line of sodium was
used in optical spectroscopy as a reference line, for example, in the determination
of the refractive indices of various substances in the gaseous or liquid form, or of
some alkali crystals (LiF, NaCl, KI, etc) [1]. This line plays also an essential role in
theory, for example, from the experimental methods in astrophysics (observation
of eclipses, study of the solar chromosphere, etc), the analysis of the absorption
lines of Na leads to an accurate knowledge of the oscillation force f, which plays
an important role in atomic physics [2].

Most of experimental work has thus been performed with the ground-state of
the sodium atom, and includes the measurement of total [3], differential [4], direct
differential [5] and exchange differential [6] elastic cross sections, as well as total [7]
and differential [8] n2S-n2P impact-excitation cross sections. At low energies, the
unifying feature of these experiments is the generally good, and sometimes excellent
agreement exists between measurements and the results of few-state close coupling
calculations [9].

Moreover, several measurements of differential cross sections have been carried
out with excited states of Na by means of laser techniques [10].

In 1972 Moores and Norcross [11] reported four-state close-coupling calcula-
tions of cross sections for electron scattering from sodium in its ground state at
energies below the ionization threshold at 5.14 eV. Their results have become the
standard for comparison of experimental and theoretical determination of integral
and differential cross sections for 3s → 3p excitations [7]. During the subsequent
decades, however, experimental studies of electron-alkali atom scattering moved
in new directions, making new demands on theory [12 – 16]. On the other hand,
various theoretical calculations of the electron excitation cross section for 3s → 3p
transition have differed considerably. Indeed, most calculations of the cross section
have been extensions of the Bethe or first Born approximations [17]. These differ
not only in magnitude but also in the shape of the cross sections as a function
of energy [17]. Close-coupling calculations by Barnes et al. [18] and Karule and
Peterkop [19] unfortunately disagree. However, the close-coupling calculations by
Kroff [20] and Moores and Norcross [11] indicate agreement with the results of
Ref. [19]. A model proposed by Vainshtein et al. [21], which attempts empirically
to include the polarizations of sodium atom, gives still other cross sections. More-
over, at high energies, the first and second Born approximations describes quite
accurately many collision processes [22], but in the intermediate region of energy a
good theory remains to be found. In this way a number of theoretical models have
been developed to cope with the complex problem and our investigation reports on
the calculations of the cross sections for the 3s → 3p transition in Na by electron
impact, by considering the schematic model (SM).
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In this paper we adopt the method of close coupling in the two-state approx-
imation to investigate quantitatively the effects of the energy separation ∆E, the
magnitude of the coupling and the direct interaction potentials on the inelastic
cross sections for 3s → 3p transition in Na, using the Numerov method (NM)
technique [23]. The obtained results will be compared with those of other approxi-
mations.

2. Formulation of electron-atom collisions

The theory of the problem of electron-atom collision in the close-coupling ap-
proach has been widely formulated by many authors [9, 10, 20, 23 – 28] In this
section, the resume of the general theory of atomic collisions will be outlined. Con-
sider an electron with linear momentum h̄k0 colliding with an atom, which was
initially in the state characterized by Ψ0 and E0. We shall denote the coordinates
of the colliding electron by r, those of the atomic electrons by r1, r2, ... and the
potential energy between the electron and the atom by V (r, r1, r2, ...).

We also denote the angular momentum numbers of the incoming electron as
l1m1 and the initial atomic state by β, and that of the outgoing electron by l′1m

′
1

with all other states β′ of the atom. In this paper we neglect the exchange effect
between the incident electron and the atomic electrons. The total wave function [24]
of the system may be written as

Ψ(β′|r, r1, r2, ...) = r−1
∑

β

Fβ(β′|r)ψβ(r1, r2, ..., r̂) , (1)

where β = (α, l,m) and ψβ(r1, r2, ..., r̂) can be expressed in terms of the spherical
harmonics . Substituting this equation in the Schrödinger equation, we obtain the
following system of equations

[
d2

dr2
+ k2

β −
lβ(lβ + 1)

r2

]
Fβ(β′|r) =

∑

γ

Fγ(β′|r)Uβγ(r) , (2)

where

Uβγ(r) =
2M

h̄2

∫
ψ∗

β(r1, r2, ...)V (r, r1, r2, ...r̂)ψγ(r1, r2, ...r̂)dr1dr2...dr̂ . (3)

The functions F must satisfy the conditions

Fβ(β′|0) = 0 , (4)

Fβ(β′|r) ∼
1

k
1

2

β

[δ(β, β′)e−i(kr− 1

2
lβπ) − S(β, β′)ei(kr− 1

2
lβπ)] . (5)
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The cross section for the transition n′l′1 → nl1 can be expressed [24] in terms of
the collision strength and the S matrix as

σ(n′l′1 → nl1) =
πΩ(n′l′1nl1)

k2(2l1 + 1)
, (6)

where the total collision strength is

Ω(α, α′) =
∑

lm,l′m′

|S(αlm,α′l′m′)|2 . (7)

In this work we confine ourselves to the singly excited configuration, and since
the core electron extends only over a small region near nucleus, we ignore the
structure of the core. Therefore, the problem can be reduced to the one-electron
atom. On making multipole expansions of the potentials we have (in atomic units),

Uβγ(r) =
∑

λ

Uλ(β, γ|r) , (8)

with

U0(nl1l2L, n
′l′1l

′

2L|r) = 2δ(l1l2, l
′

1l
′

2)

[
−
δ(n, n′)

r
+ y0(nl1, n

′l′1|r)

]
, (9)

Uλ(nl1l2L, n
′l′1l

′

2L|r) = 2fλ(l1l2l
′

1l
′

2, L)yλ(nl1, n
′l1|r) , (10)

for λ > 0, where

yλ(nl1, n
′l1|r) =

1

rλ+1

r∫

0

φnl1(r
′)r′λφn′l′

1
(r′)dr′ +

+ rλ

∞∫

r

φnl1(r
′)

1

r′λ+1
φn′l′

1
(r′)dr′, (11)

where φnl is an atomic radial function and fλ are a generalization of similar co-
efficients employed in atomic structure problem and their expressions are given in
Ref. [29]. For large value of r

yλ ∼
1

rλ+1
Sλ(nl1, n

′l′1) +O(r−λ−2) , (12)

where

Sλ(nl1, n
′l1) =

∞∫

0

φnl1(r)r
λφn′l′

1
(r)dr , (13)
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then the dominant interactions are those for the dipole term λ = 1. It can be seen
from the parity conservation conditions on the angular momentum numbers that
these occur only for l′1 = l1 ± 1 which is the condition for the transitions to be
optically allowed.

3. Numerov technique (NM)

Solving the coupled linear differential equations (2) is a problem encountered
in the theory of atomic collisions, and extensive literature exists on the subject. A
general method for separation is still not available at the moment [30] and obvi-
ously constitutes an interesting test for further investigations from the mathemat-
ical point of view. In most cases one must resort to numerical iteration procedure
to solve these equations. Many different numerical techniques have been developed
over the years and can be generally split into two groups, explicit (propagators)
and implicit techniques. Both techniques divide the interval of the independent
variable into grids. Explicit methods require the solution of the dependent variable
at the preceding grid point to compute its value at the next adjacent point.These
techniques are easy to code, fast, convergent, and do not require a considerable
amount of computational work. The Numerov [31], Gordon [32], and log derivative
propagator [33] methods are examples commonly used in atomic collision problems.
A performance review of these algorithms is given in Ref. [34]. In this work, the
Numerov numerical method will be used to solve the coupled-channel Schrödinger
equations in a two state approximation. This technique does not require a consider-
able amount of computational work and converges rapidly even though the strong
coupling interactions are involved. It is used also by many authors [9, 18, 23, 25, 34]
to solve special cases in electron-atom collisions.

In this section, the outline of the Numerov numerical method will be presented.
Indeed, in a compact matrix notation, the coupled differential equations (2) may
be written as,

[
d2

dr2
I + Z(r)

]
F(r) = 0 , (14)

where I is the unit matrix, the solution matrix F has elements Fββ′ ; the first index
specifies a channel and the second one referes to a set of boundary conditions, and
the functions Zββ′(r) are given by

Zββ′(r) =

[
k2

β −
lβ(lβ + 1)

r2

]
δββ′ − Uββ′ . (15)

In an exact numerical treatment, and after discretization, this system can always
be cast into a series of recurrence relations [35] such as

Ai+1Fi+1 = BiFi + Ci−1Fi−1 , (16)
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in which, the value of the solution at any position ri+1 may be inferred from the
knowledge of its values at previous positions ri, ri−1. We find with a Numerov’s
treatment that

Ai+1 = I +
h2

12
Z(ri+1) , (17)

Bi = 2I −
5h2

6
Z(ri) , (18)

Ci−1 = I +
h2

12
Z(ri−1) , (19)

in which h stands for the increment of the variable and the error term is of order
O(h2/240).

The solutions are initiated near the origin by a Frobenius-type expansion and
developed out form the origin using this iterative procedure (17 - 19). The S-matrix
can be found by matching the numerical solutions to (5) for two large enough values
of r (e.g. ra, rb). These steps comprise the numerical procedure to solve the system
of coupled differential equations.

4. Application: The 32s → 32p transition of Na by
electron impact

In particular, we shall consider the transition 3s → 3p in Na, which is an
excellent example of a near resonance and strong coupling situation and has an
energy separation ∆E = 2.104 eV and a rather large line strength s2 = 19.3.
Since this transition is optically allowed, the coupling matrix element Uβγ becomes
proportional to 1/r2 asymptotically, and because of this long-range interaction, it
is expected that many partial waves will contribute to the total cross section.

Salmona and Seaton [26] have discussed this problem and made calculations
based on the modified Bethe approximations B’I and B’II, which are found to
satisfy conservation conditions. The results were found to be quite good for high
energies. Cross sections for this transition have been determined experimentally
and found to be large [36].

We shall calculate the partial cross sections for several values of the incident
electron energy k2

0 , and the total cross sections may then be determined by utilizing
the “tail” of B’I as in Refs. [24, 27]

σSM = σB′I −

l0∑

l=0

σB′I
l +

l0∑

l=0

σNM
l , (20)

where the Bethe approximation cross section is given in intermediate energy as [37]

σB′I =
π

k2
0

(
8s2

3

)
ln

(
ko + kβ

|k0 − kβ |

)
, (21)
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and in the high energy as

σB′I =
4π

3

s2

k2
0

[
ln

(
ko + kβ

|k0 − kβ |

)
+ ln

(
η2

|k2
0 − k2

β |

)]
, (22)

where k0(kβ) is the wave number of the incident (scattered) electron. The ad-
justable parameter η introduced by Bethe is determined by fitting to the Born
approximation.

5. Schematic model

We shall be concerned primarily with the special case of ns → np transition
by electron impact, which involves:

(a) Strong coupling,

(b) Long range interaction potential,

(c) Near resonance.

The Numerov iteration scheme is not restricted to this type of problems.
Throughout the calculations, the exchange between the incident electron and the
atomic electron has been ignored, since this is justifiable for collisions with long-
range interactions. However, the effect of electron exchange can be readily incor-
porated into the general formulation of the numerical procedure.

In the approximation where the coupling between two states is strong and with
all other states is ignored, a two-channel problem results. Then the coupled equa-
tions (2) can be replaced by

[
d2

dr2
+ k2

0 −
l0(l0 + 1)

r2
− U00

]
F0 = U0βFβ , (23)

[
d2

dr2
+ k2

β −
lβ(lβ + 1)

r2
− Uββ

]
Fβ = Uβ0F0 . (24)

This system is solved by the Numerov procedure [12,19]. It is instructive to consider
first a schematic model in which it is assumed that

U00 = Uββ = 0 , (25)

U0β = Uβ0 = −A/r2 , (26)

where

A = −
2s

3
. (27)

With these forms of potentials, it is possible to obtain analytical solutions for F0

and Fβ in the limiting case of exact resonance (k0 = kn). Indeed, the system can
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be separated by introducing the following transformation [30]

X(a) =

(
1 − a 1 + a

−(1 + a) 1 − a

)
(28)

where the quantity a is given by

a = 0, if l0 = lβ ,

= 2ε±
√

1 + 4ε2 , if l0 /=lβ , (29)

where

ǫ =
A

∆L
, (30)

and

∆L = l0(l0 + 1) − lβ(lβ + 1) . (31)

The separated equations of this system are

[
d2

dr2
+ k2

0 −
ν±

2

r2

]
Z± = 0 , (32)

where

ν±
2

=
1

2
[l0(l0 + 1) + lβ(lβ + 1) ±

√
(∆L)2 + 4A2] . (33)

The solutions of equation (32) which satisfy the initial conditions (4) can be ex-

pressed in terms of the Bessel functions of the first kind of order µ± =
√
ν±2 + 1

4

which are real constants. Then the valid solutions are given by the following con-
dition

A > (l0 +
1

2
)(lβ +

1

2
) . (34)

The cross sections can not be calculated for the very small values of the angular
momentum numbers in the schematic model. The functions F0 and Fβ may be
recovered by the inversion transformation

[
F0

Fβ

]
= X−1

[
Z+

Z−

]
. (35)

The partial inelastic cross sections can be calculated from Fβ as in Ref. [30]

σl =
π

k2
0

(2L+ 1)

(
1 − a2

1 + a2

)2

sin2(η+
L − η−L ) , (36)
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where η±L are the conventional partial phase shifts and are given by

η±L =
1

2
πµ± . (37)

For problems involving energies near resonance, it is not possible to decouple the
system, and we have recourse to the use of the numerical treatment. In carrying
out the solution by Numerov method, the iterative cycle was repeated until the
solutions had converged to the required accuracy. It was found satisfactory to use
an integration step of δr = 0.1 and to match the asymptotic expression at r = 249.9
and rb = 250.0.

6. General results and conclusion

In the previous sections, a technique was briefly discussed whereby inelastic
cross sections for collisions and transitions under near resonance conditions can be
determined. It is now wished to investigate the calculations on the behavior of these
cross sections for different parameters of coupling and resonance and to compare
them with results obtained by other methods of calculations.

6.1. Effect of the energy separation ∆E

Typical curves, representing partial cross sections for A = 3 and different en-
ergy separations ∆E, are given in Fig. 1. It can be seen that the values of σl increase

Fig. 1. Partial cross sections σl for different values of separation energy ∆E (eV)
and A = 3, with E = 13.6 eV, calculated by using the schematic model (SM). The
straight line is calculated by Eq. (39).
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steadily with the decrease of ∆E, the maximum occurring for ∆E = 0. It is impor-
tant to note that these partial cross sections remain below the maximum allowed
by conservation.

We further note that the main features of results obtained by this numerical
procedure coincide with those obtained by the method of separation of coupled
equations [39]. The partial cross sections for l = 0 and 1 are not shown since they
cannot be calculated by this scheme.

6.2. Effect of the magnitude of coupling

In Fig. 2, the collision strength in the schematic model for ns → np transition,
at exact resonance, is given with the magnitude of the coupling strength A. It
has been shown that for exact resonance collisions, as one increases the strength of
coupling (from the weak coupling), the collision strength first increases rapidly, then
reaches a certain saturation stage, and finally behaves in an oscillatory manner. The
saturation effect is more pronounced at low values of l, and the collision strength
for higher l requires even stronger coupling for complete saturation. These results
also concur with those obtained by the method of separation of coupled equations
for the case of the three-channel problem [39, 38].

For the case of near (but not exact) resonance, the qualitative behavior of the
partial collision strengths with respect to the degree of coupling is similar to that
of exact resonance. Figure 3 shows the variation of Ωl/(2l + 1) with respect to A
for an energy separation of the initial and final states ∆E of 2.0 eV.

Fig. 2. Collision strength Ωl/(2l + 1) (∆E = 0) for ns → np transition in the
schematic model, with exact resonance ∆E = 0. in terms of the magnitude of the
coupling strength A, for an incident energy of 13.6 eV.

202 FIZIKA A (Zagreb) 15 (2006) 3, 193–208



bougouffa: the study of atomic transitions by use of Numerov technique . . .

Fig. 3. Values of collision strength Ωl/(2l + 1) for different l and ∆E = 2.0 eV, in
terms of the magnitude of the coupling strength A for the incident energy of 13.6
eV.

6.3. Effect of direct interaction potentials

For electron-atom collisions, the direct potentials U00 and Uββ behave like
e−ar/r near the origin and decay rapidly on account of the exponential factor.
The radial part of the coupling potential U0β is proportional to r−2 at large dis-
tances (for the ns → np transition) but attains a maximum and eventually passes
through the origin as r decreases to zero. Numerical values of σSM

l with and with-
out the direct potentials are given in Table 1 for two values of the incident energy.
For different values of energy, the partial cross-sections in the two cases agree quite
well with each other. This is understandable because for a particular value of l, the
classical distance of closest approach is

r2l = l(l + 1)/k2 , (38)

which increases with the decrease of energy, thereby causing the region close to
the atom to be less important to the scattering of the partial wave, and hence for
such energies the cross section is quite insensitive to the detailed behavior of the
elements Uij(r) near the origin.

FIZIKA A (Zagreb) 15 (2006) 3, 193–208 203



bougouffa: the study of atomic transitions by use of Numerov technique . . .

TABLE 1. Partial cross sections σl(πa
2
0), where the indices ‘w’ and ‘o’ represent the

case with and without direct potential, respectively, for two values of the incident
energy, line strength s2 = 19.0 and ∆E = 2.104 eV.

E = 13.676 eV E = 33.66 eV

l σw
l σo

l σw
l σo

l

2 4.068 3.992 1.819 1.816

3 4.251 4.194 2.322 2.279

4 3.365 3.350 2.090 1.759

5 2.544 2.540 1.770 1.479

6 1.915 1.917 1.483 1.244

7 1.451 1.448 1.246 1.054

8 1.103 1.103 1.055 0.898

9 0.849 0.849 0.898 0.770

10 0.657 0.657 0.771 0.665

6.4. Comparison with other methods

For the purpose of comparison, calculations of collision strength for 32S → 32P
transition in Na, which has an energy separation ∆E = 2.104 eV, and rather large
line strength s2 = 19.3, have been made by the use of the Bethe approximation and
the resonance-distortion method [27] in the case of the three-channel problem, but

our results are for the two-channel problem. Numerical values of σRD
l , σB′II

l , σSM
l

are given in Table 2 for two values of the incident energy and several values of
l. All cross sections are in units πa2

0. As expected, the major contribution to the
cross section in the case of E = 10.52 eV is due to a few intermediate values of
l, while for E = 33.66 eV, the contribution is more uniformly distributed among
several different l. In fact, σSM

l are closer to σRD
l for l = 2 at E = 10.52 eV and

for l = 2, 3 at E = 33.66 eV, than they are to σB′II
l . At high values of l, σSM

l

deviates considerably from σRD
l and σB′II

l . This is understandable since both in
the resonance-distortion and B’II calculations, the three-channel problem is used
where the matrix elements U12 and U13 were replaced by their asymptotic form
which depends on the angular momentum l, while the other elements of U, which
are of shorter range, were neglected. Our model is for the two-channel problem,
where the interaction potential matrix elements are replaced by their asymptotic
inverse square forms, which are independent of l.
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TABLE 2. Partial cross sections, in units of (πa2
0), of the 3s−3p transition of Na cal-

culated by the Bethe method (σB′II
l ), and resonance distortion method (σRD

l ), and
numerical technique (σSM

l ) for two values of the incident energy, for line strength
s2 = 19.0, and ∆E = 2.104 eV.

E = 10.52 eV E = 33.66 eV

l σRD
l σB′II

l σSM
l σRD

l σB′II
l σSM

l

2 4.31 6.41 4.76 1.51 2.01 1.82

3 7.58 8.37 4.58 2.40 2.61 2.28

4 8.25 8.52 3.43 2.74 2.75 2.07

5 7.44 7.73 2.44 2.70 2.67 1.76

6 6.29 6.61 1.73 2.54 2.51 1.48

7 5.18 5.47 1.23 2.34 2.32 1.24

8 4.21 4.46 0.89 2.15 2.13 1.05

9 3.39 3.59 0.64 1.96 1.95 0.90

10 2.72 2.88 0.47 1.79 1.79 0.77

11 2.18 2.30 0.34 1.64 1.64 0.67

12 1.74 1.83 0.25 1.50 1.50 0.58

13 1.39 1.46 0.19 1.38 1.38 0.51

14 1.11 1.16 0.14 1.27 1.27 0.44

15 0.89 0.92 0.11 1.17 1.17 0.39

TABLE 3. Total cross sections in units (πa2
0) and partial sums of σl for the 3s− 3p

transition in Na. (σB′II
l ) Bethe method, (σRD

l ) resonance distortion method, σ′ for
(l = 0, 1) and (σSM

l ) numerical technique with schematic model.

E(eV) σB′I σB′II σRD
∑∞

l=16 σ
B′I
l

∑15
l=2 σ

B′I
l σ′ σSM

l

4.208 288.63 64.9 47.1 0.0 9.4 12.9 22.3

7.364 231.87 71.6 61.7 0.9 18.4 7.4 26.7

10.520 189.12 68.9 62.9 3.6 21.2 5.2 27.9

16.832 139.19 60.5 57.7 9.6 21.1 3.2 33.9

23.144 111.26 53.3 51.7 13.2 19.2 2.5 34.9

33.660 84.48 44.4 43.5 15.6 16.0 1.6 33.2
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Since the B’I approximation is valid for large values of l, this may be used in
conjunction with the partial cross sections obtained by the numerical method to
calculate the total cross sections, using the tail scheme in Eq. (8). Table 3 gives
the total cross sections, calculated by means of the proposed schematic model, the
resonance-distortion method and the Bethe approximations B’I and B’II (Seaton’s
modified version of the Bethe method), where the cutoff value for the tail is l0 = 15.
Because of the use of an approximate non-diagonal interaction potential with r−2

dependence over the entire range, it was not possible to calculate the partial cross
sections for l = 0 and l = 1 by solving the differential equations in the usual way.
Instead, these two partial cross sections were simply taken as equal to the upper
limit values as imposed by the conservation law,

σmax
l = πk−2

0 (2l + 1) , (39)

which is represented by the straight line in Fig. 1.This is approximately the linear
interpolation of the curves of partial cross sections for l < 2, with the s and p state
contributions chosen from this conservation law and their percentage contributions
relative to σSM

l are given in Table 3.

In the calculations presented in previous sections, we have made the approxi-
mation of using a special set of potential functions as given in Eqs. (12 – 14) and
neglecting the effect of the exchange between the colliding and the atomic electrons.
For transition with long-range coupling, where the total cross section is distributed
over a large number of σl, these approximations can be justified on the basis that
they affect only the partial cross sections corresponding to small values of l. The
use of the schematic model was merely to simplify the numerical volume. The cal-
culation of the cross sections is not essential to the numerical technique and in
fact yields an important difference with the RD and B’II approximation. Our re-
sults can be extended to phenomenological problems of scattering to include the
angular-momentum coupling effects at the cost of more complication.
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PROUČAVANJE ATOMSKIH PRIJELAZA NUMEROVOM METODOM U
SHEMATSKOM MODELU

Računanje parcijalnih udarnih presjeka u teoriji atomskih sudara, kad je sudar nee-
lastičan i nema izmjene čestica, zahtijeva rješavanje sustava vezanih diferencijal-
nih jednadžbi. Primjenjujemo Numerovu metodu za rješavanje shematskog sustava
jednadžbi koje oponašaju rješenje stvarnih problema, a se mogu egzaktno riješiti.
Proučavamo 32S prijelaz u natriju kao odličnu primjenu uvjeta blizu rezonancije
i snažnog vezanja za slučaj približenja razmatranjem dva stanja. Ishodi računa
uspored–uju se s ishodima Betheovog približenja i približnog računa ometanja re-
zonancije. Razlika se može pripisati primjeni dvokanalnih diferencijalnih jednadžbi
umjesto trokanalnih jednadžbi u drugim približenjima i pojednostavljenim razma-
tranjem potencijala med–udjelovanja.
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