
ISSN1330–0008

CODENFIZAE4

SOLUTIONS OF A CLASS OF NONLINEAR WAVE EQUATIONS

YUAN-XI XIE and JIA-SHI TANG

Department of Engineering Mechanics, Hunan University, Changsha 410082,
P. R. China

E-mail address: xieyuanxi88@163.com

Received 22 December 2004; revised manuscript received 22 June 2005

Accepted 12 September 2005 Online 6 February 2006

The Burgers equation, KdV equation and Burgers-KdV equation are real physical
mode equations concerning many branches in physics. In this paper, by introduc-
ing a new transformation and applying the trial-function method to these three
equations, a series of more general explicit and exact travelling wave solutions to
them, which include the solitary wave solutions, the singular travelling-wave so-
lutions, and the triangle-function periodic wave solutions, are presented. Among
them, some are new travelling-wave solutions.
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1. Introduction

At present, more and more problems in branches of modern mathematical
physics and other interdisciplinary science are described in terms of suitable non-
linear models, such as the nonlinear Schrödinger equation in plasma physics [1],
the KdV equation in shallow water model [2], and so on. Therefore, it is an im-
portant and essential topic to seek the explicit and exact solutions of nonlinear
evolution equations in nonlinear science, especially in nonlinear-physics science.
In recent years, a vast variety of simple and direct approaches have been devel-
oped by mathematicians and physicists to find the exact and analytical solutions
to nonlinear evolution equations. Some of the most important new approaches are
the function-transformation method [3, 4], the homogeneous balance method [5, 6],
the hyperbolic-tangent-function expansion method [7, 8], the trial-function method
[9 – 12], the nonlinear-transformation method [13, 14], the sine-cosine method [15],
the Jacobi-elliptic-function expansion method [16, 17], the superposition method
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[18], the auxiliary-equation method [19, 20], and the like. However, not all these
techniques are universally applicable for solving all kinds of nonlinear evolution
equations directly. As a result, it is still a very significant task to look for more
powerful and efficient approaches to solve nonlinear evolution equations.

The primary aim of the present paper is to study the travelling-wave solutions
for a class of nonlinear wave equations (NWEs for short) such as the Burgers equa-
tion and the KdV equation as well as the Burgers-KdV equation by introducing
a new transformation and making use of the trial-function method. As a conse-
quence, rich explicit and exact solutions including the solitary-wave solutions, the
singular-travelling-wave solutions and the triangle-function periodic-wave solutions
are obtained, some of which are new travelling-wave solutions.

The rest of this paper is organized as follows. In Sect. 2, we introduce a method
to construct the explicit and exact solutions of a class of NEWs. In Sect. 3, as
illustrative examples, we apply it to solve three well-known NWEs. Conclusions
are given in the last section.

2. Essential approach

Throughout this paper, we restrict our attention to the investigation of the
following class of NWEs

∂u

∂t
+ u

∂u

∂x
+ α

∂2u

∂x2
+ β

∂3u

∂x3
+ γ

∂4u

∂x4
+ · · · = 0 , (1)

where α, β and γ are arbitrary constants.

In order to solve Eq. (1) easily, we introduce a new transformation of the fol-
lowing form

u =
∂v

∂x
, v = v(y) , y = y(x, t) , (2)

where v(y) and y(x, t) are two trial functions.

To begin with, let us determine the trial function y(x, t). As is well known, the
solutions of NWEs should contain the phase factor (kx − ωt). Consequently, we
directly choose the trial function y(x, t) in the following form

y = e(kx−ωt) , (3)

in which k and ω are the wave number and angular frequency, respectively.

As for the other trial function, v(y), which is not of a given form but varies from
equation to equation, it must be flexibly selected according to the specific NWE.
After determining the trial functions v(y) and y(x, t), Eq. (1) can be easily solved.
In what follows, we shall make use of the technique stated above to solve three
physically important NWEs, namely the Burgers equation, the KdV equation as
well as the Burgers-KdV equation, and acquire their explicit and exact travelling
solutions.
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3. Applications

3.1. Burgers equation

It is commonly known that the Burgers equation is of the following general form

∂u

∂t
+ u

∂u

∂x
− α

∂2u

∂x2
= 0 , (4)

which was first proposed by Burgers [21] to study issues of turbulence. For Eq. (4),
we select the trial function in the following form

v(y) = a ln(b + yn) , (5)

where a, b and n are constants to be determined later.

Based on Eqs. (2) and (3), together with Eq. (5), it is an easy exercise to show
that

u =
∂v

∂x
=

aknyn

b + yn
, (6)

∂u

∂t
=

abkn2ωyn

(b + yn)2
, (7)

∂u

∂x
=

abk2n2yn

(b + yn)2
, (8)

∂2u

∂x2
=

abk3n3yn(b − yn)

(b + yn)3
. (9)

Substituting Eqs. (6) – (9) into Eq. (4), and collecting the coefficients of powers of y
with the aid of powerful Mathematica, then setting each of the obtained coefficients
to zero, gives rise to a set of algebraic equations with respect to the unknown
constants a, b and n as follows

−ab2k3n3α − ab2kn2ω = 0 , (10)

a2bk3n3 + abk3n3α − abkn2ω = 0 . (11)

From Eqs. (10) and (11), we find

a = −2α, ω = −αk2n, b = arbitrary constant , (12)

and we can also find the wave velocity as follows

c =
ω

k
= −αkn . (13)
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Putting Eq. (12) into Eq. (6) and considering Eq. (3) as well as Eq. (13), we obtain
the general travelling-wave solution of the Burgers equation (4) in the following
form

u = −

2αknenk(x−ct)

b + enk(x−ct)
+ c + αkn , (14)

with four arbitrary constants b, c, k and n.

Making use of the following identity

ex

ex + 1
=

1

2

(

1 + tanh
x

2

)

, (15)

and setting b = 1 in Eq. (14), we get the so-called kink-type solitary-wave solution
to the Burgers equation (4) as follows

u = −αkn tanh
nk

2
(x − ct) + c . (16)

If choosing b = −1 in Eq. (14) and making use of the following identity

ex

ex
− 1

=
1

2

(

1 + coth
x

2

)

, (17)

then we acquire the singular travelling-wave solution to the Burgers equation (4)
as follows

u = −αkn coth
nk

2
(x − ct) + c , (18)

Making use of the following identity

tanh
x

2
=

sinhx

cosh x + 1
, (19)

then Eq. (16) can be changed to

u = −αkn
sinhnk(x − ct)

cosh nk(x − ct) + 1
+ c . (20)

Making use of the following identity

tanh
x

2
=

cosh x − 1

sinhx
, (21)

then Eq. (16) can be transformed to

u = −αkn
cosh nk(x − ct) − 1

sinhnk(x − ct)
+ c . (22)
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Making use of the following identity

coth
x

2
=

sinhx

cosh x − 1
, (23)

then Eq. (18) can be rewritten as

u = −αkn
sinhnk(x − ct)

cosh nk(x − ct) − 1
+ c . (24)

Making use of the following identity

coth
x

2
=

cosh x + 1

sinhx
, (25)

then Eq. (18) can be reduced to

u = −αkn
cosh nk(x − ct) + 1

sinhnk(x − ct)
+ c . (26)

Let

k = ik′ , (27)

where i is the imaginary unit and k′ a constant.

Making use of the following two identities

tanh(ix) = i tan x, coth(ix) = −i cot x , (28)

then Eq. (16) and Eq. (18) can be simplified as

u = αk′n tan
nk′

2
(x − ct) + c , (29)

u = −αk′n cot
nk′

2
(x − ct) + c , (30)

which are two triangle-function periodic wave solutions to the Burgers equation
(4).

The above solutions can be regarded as the general form solutions to the Burgers
equation (4). In the following, let us take into account a special case, and for brevity,
only some new solutions are listed as follows

u = −αk
sinh k(x − ct) − 1

cosh k(x − ct)
+ c , (31)

u = −αk
cosh k(x − ct) + 1

sinh k(x − ct)
+ c . (32)
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3.2. KdV equation

The celebrated KdV equation under consideration reads

∂u

∂t
+ u

∂u

∂x
+ β

∂3u

∂x3
= 0 , (33)

which can be used to describe the behaviour of long waves in shallow water [2].

For Eq. (33), we select the trial function v(y) in the following form

v(y) =
ayn

b + yn
, (34)

where a, b and n are constants to be determined later.

From Eq. (2) together with Eq. (3) as well as Eq. (34), it is not difficult to
deduce that

u =
abknyn

(b + yn)2
, (35)

∂u

∂t
=

abkn2ωyn(−b + yn)

(b + yn)3
, (36)

∂u

∂x
=

abk2n2yn(b − yn)

(b + yn)3
, (37)

∂3u

∂x3
=

abk4n4yn(b3
− 11b2yn + 11by2n

− y3n)

(b + yn)5
. (38)

Inserting Eqs. (35) – (38) into Eq. (33), and collecting the coefficients of powers
of y with the aid of Mathematica, then letting each of the obtained coefficients to
zero, leads to a system of algebraic equations with regard to the unknown constants
a, b and n as follows

ab4k4n4β − ab4kn2ω = 0 , (39)

a2b3k3n3
− 11ab3k4n4β − ab3kn2ω = 0 , (40)

Solving the above system of equations, we obtain

a = 12kβn, ω = k3βn2, b = arbitrary constant , (41)

from which it follows immediately that

c = k2βn2 , (42)
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Putting Eq. (41) into Eq. (35) and utilizing Eq. (3) as well as Eq. (42), we have
the general travelling-wave solution for the KdV equation (33) as follows

u =
12bβk2n2enk(x−ct)

(b + enk(x−ct))2
+ c − βk2n2 , (43)

with four arbitrary constants b, c, k and n.

Making use of the following identity

ex

e2x + 1
=

1

2
sechx , (44)

and setting b = 1 in Eq. (43), we obtain the famous bell-type solitary-wave solution
to the KdV equation (33) as follows

u = 3βk2n2sech2

[

nk

2
(x − ct)

]

+ c − βk2n2 . (45)

Similarly, making use of the following identity

ex

e2x
− 1

=
1

2
csch x , (46)

and setting b = −1 in Eq. (43), we have the singular travelling-wave solution to the
KdV equation (33) as follows

u = −3βk2n2csch2

[

nk

2
(x − ct)

]

+ c − βk2n2 . (47)

Making use of the following identity

sech2 x

2
=

1

cosh x + 1
, (48)

Eq. (45) can be converted to

u = 6βk2n2 1

cosh nk(x − ct) + 1
+ c − βk2n2 . (49)

Making use of the following identity

csch2 x

2
=

2

cosh x − 1
, (50)

Eq. (47) can be rewritten as

u = −6βk2n2 1

cosh nk(x − ct) − 1
+ c − βk2n2 . (51)
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In view of Eq. (27) and making use of the following identities

sech(ix) = sec x, csch(ix) = −i csc x , (52)

Eq. (45) and Eq. (47) can be simplified as

u = −3βk′2n2 sec2

[

nk′

2
(x − ct)

]

+ c + βk′2n2 , (53)

u = −3βk′2n2 csc2

[

nk′

2
(x − ct)

]

+ c + βk′2n2 , (54)

which are two triangle function periodic wave solutions to the KdV equation (33).

The above solutions can be thought of as the general-form solutions to the KdV
equation (33). In what follows, let us take into consideration the special case n = 2,
and for simplicity, only some new solutions are given in the following

u = 24βk2 1

cosh 2k(x − ct) + 1
+ c − 4βk2 , (55)

u = −24βk2 1

cosh 2k(x − ct) − 1
+ c − 4βk2 . (56)

3.3. Burgers-KdV equation

The famous Burgers-KdV equation reads

∂u

∂t
+

∂u

∂x
− α

∂2u

∂x2
+ β

∂3u

∂x3
= 0 , (57)

which stems from many different physical contexts as a nonlinear model equation
incorporating the effects of dispersion, dissipation and nonlinearity. Liu used it to
model the inverse energy cascade and intermittent turbulence in which a dispersion
effect is taken into consideration [22, 23].

For Eq. (57), we select the trial function v(y) in the following form

v(y) =
ayn

b + yn
+ d ln(B + yn) , (58)

where a, b, d and n are constants to be determined later.

In view of Eqs. (2) and Eq. (3) as well as Eq. (58), and with the aid of Mathe-
matica, it is not hard to derive that

u =
knyn(ab + bd + dyn)

(b + yn)2
, (59)
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∂u

∂t
=

bkn2ωyn(−ab − bd + ayn
− dyn)

(b + yn)3
, (60)

∂u

∂x
=

bk2n2yn(ab + bd − ayn + dyn)

(b + yn)3
, (61)

∂2u

∂x2
=

bk3n3yn(ab2 + b2d − 4abyn + ay2n
− dy2n)

(b + yn)4
, (62)

∂3u

∂x3
=

bk4n4yn(ab3+b3d−11ab2dyn
−3b2dyn+11aby2n

−3bdy2n
−ay3n+dy3n)

(b + yn)5
.

(63)

Putting Eqs. (59) – (63) into Eq. (57), and collecting the coefficients of the
same powers of y with the help of Mathematica, then setting each of the obtained
coefficients to zero, brings about a set of over-determined algebraic equations with
respect to the unknown constants a, b, d and n as follows

−ab4k3n3α − b4dk3nα + ab4k4n4β − ab4kn2ω − b4dkn2ω = 0 , (64)

a2b3k3n3 + 2ab2dk3n3 + b3d2k3n3 + 3ab3k3n3α − b3dk3n3α

−11ab3k4n4β − 3b3dk4n4β − ab3kn2ω − 3b3dkn2 = 0 , (65)

−a2b2k3n3 + ab2dk3n3 + 2b2d2k3n3 + 3ab2k3n3α + b2dk3n3α

+11ab2k4n4β − 3b2dk4n4β + ab2kn2ω − 3b2dkn2ω = 0 , (66)

−abdk3n3+bd2k3n3
−abk3n3α+bdk3n3α−abk4n4β+bdk4n4β−abkn2ω−bdkn2ω = 0 .

(67)

Solving the above system of equations with the help of Mathematica, we get

a = −

12

5
α, d = −

12

5
α, k = −

α

5nβ
, ω =

6α3

125nβ2
, b = arbitrary constant , (68)

from which it follows immediately that

c =
6α2

25β
. (69)

Substituting Eq. (68) into Eq. (59) and taking account of Eq. (3) as well as Eq.
(69), we obtain the general travelling-wave solution to the Burgers-KdV equation
(57) as follows

u =
12α2

[

1 + 2be(α/5β)(x−ct)
]

25β2
[

1 + be(α/5β)(x−ct)
]2 + c −

6α2

25β
, (70)
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with two arbitrary constants b and c.

Setting b = 1 in Eq. (70), and making use of the identity (15), we obtain the
solitary-wave solution to the Burgers-KdV equation (57) as follows

u = −

3α2

25β

[

1 + tanh
α

10β
(x − ct)

]2

+ c +
6α2

25β
. (71)

Similarly, taking b = −1 in Eq. (70) and making use of the identity (17), we get
the singular travelling-wave solution to the Burgers-KdV equation (57) as follows

u = −

3α2

25β

[

1 + coth
α

10β
(x − ct)

]2

+ c +
6α2

25β
. (72)

Making use of the identity Eq. (19) and the following identity

sinh2 x = cosh2 x − 1 , (73)

then Eq. (71) can be rewritten as

u =
6α2

25β
[

cosh α
5β (x − ct) + 1

] −

6α2 sinh α
5β (x − ct)

25β
[

cosh α
5β (x − ct) + 1

] + c . (74)

Likewise, making use of the identity Eq. (21) and Eq. (73), then Eq. (71) can be
transformed to

u =
6α2

25β
[

cosh α
5β (x − ct) + 1

] −

6α2
[

cosh α
5β (x − ct) − 1

]

25β sinh α
5β (x − ct)

+ c . (75)

Similarly, making use of the identities Eq. (23) and Eq. (73), then Eq. (72) can be
converted to

u = −

6α2

25β
[

cosh α
5β (x − ct) − 1

] −

6α2 sinh α
5β (x − ct)

25β
[

cosh α
5β (x − ct) − 1

] + c . (76)

Likewise, making use of the identities Eq. (25) and Eq. (73), then Eq. (72) can be
changed to

u = −

6α2

25β
[

cosh α
5β (x − ct) − 1

] −

6α2
[

cosh α
5β (x − ct) + 1

]

25β sinh α
5β (x − ct)

+ c . (77)

Let
α

10β
= ik′ , (78)
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and making use of the identity (28), then Eq. (71) and Eq. (72) can be simplified
as

u = −

6αk′

5
[1 + i tan k′(x − ct)]2i + c +

12αk′

5
i , (79)

u = −

6αk′

5
[1 − i cot k′(x − ct)]2i + c +

12αk′

5
i , (80)

which are two complex-line solutions for the Burgers-KdV equation (57).

Evidently, the solutions (71) and (72) are in complete agreement with those
obtained in Ref. [24]. The solutions (74) and (76) can be seen in Ref. [25]. But the
rest of the solutions, to our knowledge, are not found in the literature. Finally, it
should be remarked that if “c” in the each of the above solutions is replaced by
“−c”, then we can obtain many other explicit and exact travelling wave solutions
to the Burgers equation, KdV equation and Burgers-KdV equation. Here we omit
them for the reason of brevity.

4. Conclusions

To summarize, by introducing a new transformation and using the trial-function
method, abundant explicit and exact travelling-wave solutions to the Burgers equa-
tion, KdV equation and Burgers-KdV equation, such as the solitary-wave solutions,
the singular travelling-wave solutions, and the triangle-function periodic wave solu-
tions are obtained. Among them, some are new travelling-wave solutions. Because
these three equations are real physical models, much attention has been paid to
solve them by many authors, and quite a few papers have studied their travelling-
wave solutions, but the results obtained in this paper are more abundant than
others. In addition, compared with the proposed approaches in the literature, the
above described technique appears to be advantageous.
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RJEŠENJA KLASE NELINEARNIH VALNIH JEDNADŽBI

Burgersova, KdV-ova i Burgers-KdV-ova jednadžba opisuju stvarne fizičke sustave
u mnogim granama fizike. Uvod–enjem nove transformacije i primjenom metode
pokusnih funkcija za rješavanje tih triju jednadžbi, u ovom se radu izvodi niz
općenitih, eksplicitnih i egzaktnih rješenja, koja uključuju rješenja za solitarne va-
love, singularne putujuće valove i trokutne periodičke valove. Med–u njima neka su
rješenja nova.
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